UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO
INSTITUTO MULTIDISCIPLINAR

VICTOR REZENDE DE LIMA

Observator: Um Gateway para

Observabilidade de LLM

Prof. Filipe Braida do Carmo, D.Sc.

Orientador

Nova Iguagu, Dezembro de 2025

Observator: Um Gateway para Observabilidade de LLM

Victor Rezende de Lima

Projeto Final de Curso submetido ao Departamento de Ciéncia da Computacao do
Instituto Multidisciplinar da Universidade Federal Rural do Rio de Janeiro como
parte dos requisitos necessérios para obtencao do grau de Bacharel em Ciéncia da

Computacao.

Apresentado por:

Victor Rezende de Lima

Aprovado por:

Prof. Filipe Braida do Carmo, D.Sc.

Prof. Bruno José Dembogurski, D.Sc.

Prof. Fellipe Ribeiro Duarte, D.Sc.

NOVA IGUACU, RJ - BRASIL
Dezembro de 2025

MINISTERIO DA EDUCAGAO

UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO
SISTEMA INTEGRADO DE PATRIMONIO, ADMINISTRACAO E

UFR |._':-ICONTRATOS

FOLHA DE ASSINATURAS

DOCUMENTOS COMPROBATORI OS N° 33250/2025 - CoordCGCC (12.28.01.00.00.98)

(N° do Protocolo: NAO PROTOCOLADO)

(Assinado digitalmente em 17/12/2025 12:55)
BRUNO JOSE DEMBOGURSKI
PROFESSOR DO MAGISTERIO SUPERIOR
DeptCC/IM (12.28.01.00.00.83)

Matricula: #2494

(Assinado digitalmente em 16/12/2025 08:53)
FILIPE BRAIDA DO CARMO
PROFESSOR DO MAGISTERIO SUPERIOR
DeptCC/IM (12.28.01.00.00.83)

Matricula: ###295#4

(Assinado digitalmente em 16/12/2025 10:39)
FELLIPE RIBEIRO DUARTE
PROFESSOR DO MAGISTERIO SUPERIOR
DeptCC/IM (12.28.01.00.00.83)

Matricula: ##890#4

(Assinado digitalmente em 15/12/2025 23:57)
VICTOR REZENDE DE LIMA
DISCENTE
Matricula: 2020#####H#2

Visualize o documento original em https.//sipac.ufrrj.br/documentos/ informando seu niimero: 33250, ano: 2025,

tipo: DOCUMENTOS COMPROBATORI OS, data de emissdo: 15/12/2025 e o codigo de verificacio: elaleb851c

https://sipac.ufrrj.br/public/jsp/autenticidade/form.jsf

Agradecimentos

Agradeco, primeiramente, a Deus que em Sua infinita misericérdia me sustentou
e fortaleceu em cada etapa desta caminhada. Cada conquista alcancada e cada
obstéaculo superado foram frutos de Sua agao e providéncia em minha vida. Toda

honra e gloria seja dada a Deus.

Agradeco a minha amada esposa, Jéssica, pelo apoio incondicional, pelo com-
panheirismo e, acima de tudo, pela paciéncia durante as longas horas de estudo e
dedicagao que esta graduacao exigiu. Vocé foi fundamental para que eu chegasse até

aqui.

Agradego a minha filha, Mariana que mesmo com pouca idade foi minha maior
fonte de inspiracao. Seu sorriso puro e sua alegria renovaram minhas forgas nos dias
dificeis e me motivaram diariamente a concluir esta jornada, buscando sempre ser

um exemplo para voce.

Agradeco aos meus pais, Marcelo e Adriana, por tudo que fizeram por mim, nao
ha palavras suficientes para expressar minha gratidao por cada conselho, correcao e
pelo suporte incondicional que moldaram meu carater e meus valores. O sacrificio
de vocés foram o alicerce que me permitiu sonhar alto e ter a seguranga necessaria

para perseguir meus objetivos.

Agradego a todos os professores do Departamento de Ciéncia da Computagao
da UFRRJ pelo conhecimento e suporte ao longo da graduacao. Em especial, ao
Professor Filipe Braida, pela orientacao neste trabalho e pela exceléncia e dedicagao
demonstradas durante todo o curso, fundamentais para minha formacao académica e

profissional.

E por fim agradego aos amigos que a universidade me presenteou, pela parceria nos
trabalhos, pelos estudos em grupo e pelos momentos de descontracao que tornaram
a graduagao mais leve e memorével. Estendo também minha gratidao aos colegas e

familiares que, direta ou indiretamente, contribuiram para a realizacao deste sonho.

11

RESUMO
Observator: Um Gateway para Observabilidade de LLM
Victor Rezende de Lima

Dezembro /2025

Orientador: Filipe Braida do Carmo, D.Sc.

A inteligéncia artificial generativa consolidou-se como um componente fundamen-
tal no desenvolvimento de software moderno, impulsionando uma rapida integracao
de capacidades cognitivas em aplicagoes comerciais através de Application Program-
ming Interfaces ([(APIs). No entanto, essa dependéncia de modelos externos criou
um novo paradigma operacional, onde o niicleo de inteligéncia das aplicagoes reside
fora da infraestrutura controlada pelas organizagoes. Esse cenario resulta em um
problema critico de pouca visibilidade e falta de governanca, caracterizado pela
imprevisibilidade de custos gerados a partir do consumo de tokens, riscos de pri-
vacidade no trafego de dados sensiveis e dificuldade de auditoria. Com o objetivo
de mitigar esses riscos e retomar o controle infraestrutural, este trabalho propoe e
implementa o Observator, um gateway de observabilidade de codigo aberto projetado
para orquestrar, auditar e gerenciar as interacoes entre clientes e provedores de Large
Language Model ([LLM]). A solugao validou a eficacia do padrao arquitetural de Al
Gateway com o padrao de projeto adapter, demonstrando-se uma alternativa viavel
as plataformas Software as a Service (SaaS) proprietarias existentes no mercado,
ao oferecer soberania total dos dados e baixo atrito de integracao sem os custos de

licenciamento ou os riscos de privacidade inerentes a ecossistemas fechados.

11

ABSTRACT
Observator: Um Gateway para Observabilidade de LLM
Victor Rezende de Lima

Dezembro /2025

Advisor: Filipe Braida do Carmo, D.Sc.

Generative artificial intelligence has established itself as a fundamental component
in modern software development, driving the rapid integration of cognitive capabilities
into commercial applications via[APLs. However, this reliance on external models
has created a new operational paradigm where the application’s intelligence core
resides outside the infrastructure controlled by organizations. This scenario results
in a critical problem of low visibility and lack of governance, characterized by the
unpredictability of costs generated from token consumption, privacy risks in sensitive
data traffic, and auditing difficulties. Aiming to mitigate these risks and regain
infrastructural control, this work proposes and implements Observator, an open-
source observability gateway designed to orchestrate, audit, and manage interactions
between clients and [LLM providers. The solution validated the effectiveness of the
Al Gateway architectural pattern combined with the adapter design pattern, proving
to be a viable alternative to the proprietary[Saa8 platforms existing in the market by
offering full data sovereignty and low integration friction without the licensing costs

or privacy risks inherent to closed ecosystems.

v

Lista de Figuras

[Figura 3.1: Diagrama Entidade-Relacionamento do Sistemal 39
[Figura 4.1: 'Tela de Cadastro de Usuarios| 49
[Figura 4.2: 'Tela de Login| 50
[Figura 4.3: 'lela de Recuperacao de Senhal. 51
[Figura 4.4: 'Tela de Dashboard| 52
[Figura 4.5: 'Tela de Historico de Interacoes 53
[Figura 4.6: 'Tela de Detalhamento de Interacaol 54
[Figura 4.7: 'Tela do Painel Administrativol 55
[Figura 4.8: 'Tela de Registro Centralizado de Contas 55
[Figura 4.9: 'Tela de Edicao de Usuariof 56
[Figura 4.10: Tela de Configuracao de Perfill 57
[Figura 4.11: Tela de Alteracao de Senhal o7
[Figura 4.12: Tela do Gerenciamento de Tokens de Acesso a API| 58

Lista de Tabelas

(3.1 Tabela Comparativa das Solucoes Representativas de Observabili- |
| dadel 23
[3.2 Tabela de Requisitos Funcionais| 28
[3.3 Tabela de Regras de Negocio] 31

vi

Lista de Abreviaturas e Siglas

API [[Application Programming Interface)

BART | [Bidirectional and Auto-Regressive Transformers|

BERT | [Bidirectional Encoder Representations from Transformers

BPE____1[Byte Pair Encoding

[CSS 1[Cascading Style Sheets|

GPU [|Graphics Processing Unait)

GP 1T [|Generative Pre-trained Transformer]

GUI [|Graphical User Interface)

HMR._|[Hot Module Replacement]

HMM | [Hidden Markov Models|

[HTTP] [Hypertext Transfer Protocol]

(LA | Inteligéncia Artificiall

JSON [|JavaScript Object Notation)

JSONB [|JSON Binary|

[LLM 1 [Large Language Modell

LM [|Language Modell

[LSTM 1 [Long Short-Term Memory)

MVC | Model-View-Controller]

ORM ___ [|Object-Relational Mapping|

vii

PLN [|Processamento de Linguagem Naturall

[RAG | [Retrieval-Augmented Generation)

[RBAC 1[Role-Based Access Controll

[REST 1 [Representational State Transfer]

[RF__ ||Requisitos Funcionais|

[RNN | [Recurrent Neural Networks|

RN ||Regras de Negocio

SaaS — 1[Software as a Service]

SDK [[Software Development Kit|

SGBD | [Sistema Gerenciador de Banco de Dadosl

SPA__ 1[Single-Page Application)

SQL [|Structured Query Languagel

('5 | |Text-to-Text Transfer Transformer

MBT | [Time Between Tokens|

MPU ____1[Tensor Processing Unif

MTET | [Time To First Tokenl

MTLT | [Time To Last Tokenl

WL [||User Interface]

[URL____1[Uniform Resource Locator]

Viil

Sumario

[Agradecimentos|

[Resumal

[Abstract]

[Lista de Figuras]

ILista de Tabelas|

[Lista de Abreviaturas e Siglas|

(1 Introducao|

2 Fundamentacao|

2.1 Large Language Model|

[2.1.1 Das Abordagens kEstatisticas a Arquitetura Transformer

[2.2 Arquiteturas de Acesso a LLM|.

[2.2.1.1

Interacao Humano-Modelo|

Po12

Interacao Sistema-Modelo]

1X

iii

iv

vi

vii

[2.2.2 Fluxos de Geracao| 9

[2.2.2.1 Geracao Sincrona | 9

[2.2.2.2 Geracao por Streaming | 10

[2.2.2.3 Embeddings|o 10

224 RAGIT 10

[2.3 Engenharia de Prompt e Observabilidade de LLM| 11
[2.3.1 Engenharia de Prompt| 12
2.3.2 Observabilidadede LM 14
2.3.2.1 Observabilidade de Custal 14

[2.3.2.2 Observabilidade de Qualidade] 15

2323 Observabilidade de Laténcial 15

[3 Propostal 17
[3.1 Motivacao|l 17
(3.2 lrabalhos Relacionadosl 19
[3.2.1 LangSmith|. 0o 20
[3.2.2 Langtusel 21
(.23 Heliconel. oo 21
324 Phoenix]. 22
[3.2.5 Sintese Comparatival 23

[3.3 Proposta de Sistema| oo 24
3.3.1 Modulos do Sistemalo 00000000 24
[3.3.1.1 Autenticacao e Autorizacao| 25

[3.3.1.2 Gateway de LLM | 25

[3.3.1.3 Auditoria e Engenharia de Custos|. 26

B.3.1.4 Dashboard|o 27

[3.3.2 Requisitos Funcionais|. 27
[3.3.3 Regras de Negocio| 30
.34 Casosde Usd 33
[3.3.0 Modelagem de Dados|, 38
4__Observator| 41
[4.1 'Tecnologias Utilizadas| 41
HIT AdonisISl. 42
MIITT Tuwad00 o 42

M1.1.2 Authl.o 43

M113 DBounced 44

4114 AdomisJobs oo 44

[4.1.2 Padrao Arquitetural: Al Gateway| 46
[4.1.3 Arquitetura de Projeto e Front-end| 46

[4.2 Implementacao do Observator|. 48
[4.2.1 Registro, Autenticacao e Recuperacaol. 48
“22 Dashboard oo 51
[4.2.3 Histoérico de Interacoes| 52
[4.2.4 Detalhes da Interacao|. 53
[4.2.5 Painel de Governanca de Usuéariog. 54

el

[4.2.6 Gestao de Conta e Configuracoes|

Il.z.(i.l I g:l iil g: l!ig:llli!iza!lg: & 1‘:&!1211' ---------------

[4.2.6.2 Seguranca e Credenciais|

4263 Gestaode Jokens o000

5__Conclusaol

[b.1 Consideracoes Finaig o000
[b.2 Limitacoes e ITrabalhos Futuros|
b.2.1 Limitacoes Atuais|.

H.2.2 Trabalhos Futurosl. L.

xii

64

Capitulo 1

Introducao

A 1ultima década marcou uma transformagao singular na industria de tecnologia,
impulsionada pela consolida¢ao da Inteligéncia Artificial ([Al) como eixo central da
inovagao. O surgimento e a rapida evolucao dos [LLMk, aliados a popularizacao
da [[A] generativa, catalisada pelo lancamento de plataformas como o ChatGPTEl
superaram barreiras técnicas historicamente desafiadoras. Esses avangos permitiram
que sistemas computacionais passassem a processar, interpretar e gerar linguagem
natural com niveis inéditos de fluéncia, robustez e eficiéncia (MASLEJ et al., 2023)) .
A disponibilizacao desses modelos por meio de[APIk ou fazendo uso de plataformas
democratizou o acesso a essa tecnologia, intensificando a corrida pela integragao

de capacidades cognitivas em softwares comerciais.

No entanto, a integragao com introduziu um impacto operacional significa-
tiva, ao consumir esses modelos como servigos em nuvem, as equipes de engenharia
passaram a operar com visibilidade limitada sobre os custos gerados por essa integra-
cao (DIAZ-DE-ARCAYA et al/, 2024). Os provedores de [LLMk nao disponibilizam
informacoes detalhadas sobre as interagoes com softwares, o que acrescenta novos
riscos a engenharia de software, como a imprevisibilidade or¢amentaria decorrente
da cobranca por tokens, a dificuldade em diagnosticar falhas seménticas e a auséncia
de governanga sobre os dados enviados (LIAO; VAUGHAN] 2023)). Além disso,

ferramentas tradicionais de monitoramento, projetadas para sistemas deterministicos,

Lhttps = //chatgpt.com

mostram-se insuficientes para lidar com a natureza probabilistica e financeiramente

sensivel dessas novas operagoes (DIAZ-DE-ARCAYA et all 2024).

Diante desse cenario, torna-se imperativo o desenvolvimento de mecanismos que
devolvam as equipes de engenharia o controle sobre sua infraestrutura de inteligéncia.
As solugoes existentes no mercado frequentemente impoem dilemas entre simplicidade
e soberania, exigindo ou o envio de dados sensiveis para plataformas proprietéarias ou
a configuracao de infraestruturas complexas e onerosas. Hé, portanto, uma lacuna
para ferramentas que oferecam transparéncia operacional sem sacrificar a privacidade

dos dados ou a agilidade do desenvolvimento.

Nesse contexto, este trabalho propoe o projeto e a implementagao do Observator,
uma plataforma de observabilidade e governanca baseada em arquitetura de gateway.
O objetivo central é construir uma solugao de cédigo aberto capaz de interceptar,
auditar e gerenciar as interacoes entre aplicacoes clientes e provedores de [LLMl A
proposta busca viabilizar a integracao transparente com aplicagoes existentes por
meio da compatibilidade com Software Development Kit (SDKJ)s oficiais, minimizando

o atrito de adocao.

O presente trabalho esta organizado em cinco capitulos. O apresenta
a fundamentacao teorica sobre [LILME, iniciando pela defini¢ao conceitual desses
modelos, passando pelas formas de acesso e consumo, e culminando na discussao
sobre engenharia de observabilidade aplicada a [LLMk. O discute a
motivacao, analisa os trabalhos relacionados e apresenta a proposta de solucao. O
descreve as tecnologias utilizadas e detalha o processo de implementagao
da plataforma. Por fim, o apresenta as consideracoes finais, destacando

as limitagoes do trabalho e sugerindo dire¢oes para investigagoes futuras.

Capitulo 2

Fundamentacao

Os avancos recentes em redefiniram o campo do Processamento de Lingua-
gem Natural (PLN]), estabelecendo novos paradigmas de desempenho, generalizagao
e aplicabilidade (BOMMASANT et al.| 2021). Esses modelos, conhecidos como [LILMk,
incorporam arquiteturas de aprendizado profundo capazes de analisar e gerar texto
com elevado grau de coeréncia contextual, fluidez linguistica e adaptagao a miltiplas

tarefas (ZHOU et al.| 2023).

Entretanto, a compreensao dos [LLMk exige mais do que a observacao de seu
comportamento atual, implicando em revisitar a trajetéria historica que levou a
construcao de arquiteturas cada vez mais expressivas e eficientes, passando dos
modelos estatisticos tradicionais aos mecanismos que fundamentam a era da arquite-
tura transformer (JURAFSKY; MARTIN]| [2025). Além disso, compreender como
esses sistemas sao disponibilizados ao publico, seja por meio de interfaces diretas
ou por integracoes via [APIl permite contextualizar suas limitacoes, capacidades e

implicacoes para o desenvolvimento de solucoes baseadas em [Al

Assim, este capitulo tem como objetivo oferecer uma visao abrangente da evolucgao
conceitual e arquitetural que culminou nos [LLMk, bem como dos modos de acesso e
operacao desses sistemas. Tal panorama estabelece as bases necessarias para discutir,
nos capitulos subsequentes, os desafios praticos enfrentados no uso profissional dessas

tecnologias.

2.1 Large Language Model 4

2.1 Large Language Model

Antes de delimitar a especificidade dos grandes modelos, é necessario definir o
conceito de Language Model (LM]). Em sua esséncia, um Language Model é um
sistema probabilistico treinado para determinar a verossimilhanca de sequéncias de
palavras. O objetivo primordial desses modelos é prever o proximo elemento de uma
sentenga com base no histérico do texto, capturando as regularidades estatisticas,

gramaticais e semanticas da lingua alvo (JURAFSKY; MARTIN| 2025).

Os[LLMk constituem uma evolugao dessa premissa, configurando-se como sistemas
avancados de fundamentados na tarefa de geracao condicional, na qual o
modelo mapeia contextos complexos para respostas textuais coerentes. Segundo
Jurafsky e Martin| (2025)), [LLMk tratam-se de modelos probabilisticos treinados em
vastos volumes de dados para aprender a distribuicao estatistica da linguagem. A
operacionalizacao desses sistemas ocorre através da predicao iterativa de tokens, que
sao as unidades atomicas discretas que compoem o vocabulério do modelo, cuja
probabilidade de ocorréncia é calculada condicionalmente a partir de uma instrugao

ou contexto de entrada fornecido pelo usuéario, tecnicamente denominado prompt.

Enquanto para Bommasani et al.| (2021)), estes sistemas enquadram-se na definigao
de modelos fundacionais, e que podem ser definidos como modelos treinados em
escala massiva sobre dados abrangentes e que podem ser adaptados para uma vasta
gama de tarefas subsequentes. Essa caracteristica permite que uma tnica arquitetura
generalize o aprendizado para funcgoes distintas, como tradugao, sumarizacao e
geragao de codigo, eliminando a necessidade de desenvolver modelos especializados

do zero para cada aplicagao

Porém, o alcance desse patamar de generalizacao e escala reflete uma evolucao
nao linear, impulsionada pela necessidade de superar restricoes computacionais e
dificuldades na modelagem de contexto. Para dimensionar a transformacao radical
representada pelos modelos atuais, faz-se necessario examinar as arquiteturas pre-
cursoras, compreendendo como a busca pela captura eficiente de dependéncias de

longo alcance motivou a migracao dos métodos estatisticos para as abordagens de

2.1 Large Language Model 5

aprendizado profundo.

2.1.1 Das Abordagens Estatisticas a Arquitetura Transformer

Historicamente, antes da predominancia do aprendizado profundo, o [PLN foi
regido por paradigmas simbolicos e estatisticos que nao utilizavam redes neurais.
Essa era foi marcada pelo uso de modelos de n-gram, que operavam baseando-se
estritamente na contagem de frequéncia de palavras em janelas curtas de contexto
para estimar qual palavra deveria vir a seguir (JURAFSKY; MARTIN| 2025)). Outras
abordagens cléassicas, como os Hidden Markov Modelss (HMMk), foram fundamentais
para tarefas como reconhecimento de fala, baseando-se em tabelas de probabilidade
de transi¢ao entre estados. No entanto, essas técnicas dependiam de probabilidades
fixas calculadas sobre o texto de treinamento e sofriam com a escassez de dados ao
tentar lidar com sequéncias de palavras nunca vistas antes (JURAFSKY; MARTIN|
2025)).

Posteriormente, a introdugao de Recurrent Neural Networks (RNN]) possibilitou
modelar dependéncias temporais e suas variantes, em especial Long Short-Term
Memory (LSTMI), proposta por [Hochreiter e Schmidhuber| (1997)), mitigou problemas
de gradiente e ampliou a capacidade de capturar dependéncias de maior alcance,
embora ambas as classes de modelo ainda sofressem limitacoes de paralelizagao

devido ao processamento sequencial.

Para mitigar a rigidez dos modelos estatisticos baseados em simbolos discretos,
houve a adogao de representagoes distribuidas, técnicas como word2vec de Mikolov
et al.| (2013)) e GloVe de |Pennington, Socher e Manning (2014) passaram a codificar
relacoes semanticas em vetores densos. Isso permitiu uma generalizagao seméantica
mais robusta, embora ainda dependesse de arquiteturas sequenciais para processar o

contexto.

Um marco importante nessa trajetoria foi a criacao do IBM Watsonﬂ segundo
Ferrucci et al| (2010) ele combinava [PLN] recuperagdo de informagao e anéalise

probabilistica em dominio aberto. Em 2011, o IBM Watson venceu competidores

Lhttps : / Jwww.ibm.com /watson

2.1 Large Language Model 6

humanos no programa televisivo Jeopardy!El, um quiz show de perguntas e respostas.
Embora Watson nao fosse um modelo generativo, seu sucesso demonstrou a viabilidade

de sistemas capazes de interpretar perguntas complexas em linguagem natural.

Outro marco significativo ocorreu com AlphaGdﬂ em 2016, que venceu uma
partida do jogo de tabuleiro Go contra o campeao mundial Lee Se—doﬁ evidenciou
o poder do Deep Reinforcement Learning combinado a redes neurais profundas e
infraestruturas de alto desempenho. Embora AlphaGo nao seja um sistema de [PLN]
seu impacto demonstrou o potencial de redes profundas e de hardware massivamente
paralelo como Graphics Processing Unit (GPUl) e Tensor Processing Unit (TPU))
(SILVER et al., 2016)).

A transformagao arquitetural decisiva ocorreu em 2017 com o artigo Attention Is
All You Need, de Vaswani et al.| (2017)), que introduziu a arquitetura Transformer e o
mecanismo de self-attention, permitindo processamento paralelo eficiente e a captura
de dependéncias de longo alcance sem recorréncia. As principais vantagens desta
arquitetura residem em sua capacidade de paralelizacao massiva, o que viabiliza o
treinamento de modelos gigantescos com alta eficiéncia em e[TPUl Além disso,
a arquitetura destaca-se pela modelagem eficiente de contextos de longo alcance e
por sua modularidade arquitetural, caracteristica que permite a criagao de variantes

flexiveis, como encoder-only, decoder-only e encoder-decoder.

A partir dos Transformers, sucederam-se marcos que definiram a era dos [LLM]
transformando esses desenvolvimentos em infraestrutura cognitiva reutilizavel para
diversas aplicagdes, o que [Bommasani et al.| (2021]) caracteriza como modelos funda-
cionais. O ano de 2018 foi crucial para essa consolidacao: o Generative Pre-trained
Transformer (GPT) inaugurou o paradigma de pré-treinamento em grandes conjuntos
de dados seguido de fine-tuning supervisionado (RADFORD et al| 2018), enquanto
o Bidirectional Encoder Representations from Transformers (BERT)) revolucionou a
compreensao textual ao introduzir o mascaramento de tokens e arquiteturas bidireci-

onais (DAVIS, [2018]). Na sequéncia, o lancamento do [GPT}2 em 2019 demonstrou,

Zhttps : | Jwww.ibm.com/history/watson — jeopardy
3https : | /deepmind.google /research/alphago/
Ahttps : | Jwww.bbc.com /news/technology — 35785875

2.2 Arquiteturas de Acesso a LLM 7

pela primeira vez, a capacidade de geragao coerente em larga escala, incitando debates

iniciais sobre seguranga e riscos de modelos generativos (RADFORD et al., 2019)).

A evolucgao arquitetural prosseguiu com propostas de unificagao e generalizacao.
Modelos como o Text-to-Text Transfer Transformer (IH) estabeleceram que todas
as tarefas de [PLNl poderiam ser tratadas como problemas de transformacao de texto
para texto (RAFFEL et al., 2020)), enquanto o Bidirectional and Auto-Regressive
Transformers (BARI])) combinou os principios de encoder-decoder para unificar
reconhecimento e geragao em uma s6 arquitetura (LEWIS et al.; 2020). O apice dessa
fase ocorreu em 2020 com o [GPT}3, que introduziu o conceito de in-context learning,
permitindo que o modelo aprendesse novas tarefas apenas através de exemplos

fornecidos no préprio prompt, eliminando a necessidade de fine-tuning adicional para

diversos casos de uso (BROWN et al., 2020).

2.2 Arquiteturas de Acesso a LLM

A crescente complexidade computacional dos modelos fundacionais e, em especial,
dos modelos de fronteira, define um cenario em que apenas grandes organizacoes
dispoem de recursos suficientes para treinar e executar tais modelos localmente. Os
modelos de fronteira representam as instancias mais avancadas desses sistemas, alcan-
¢ando o nivel mais elevado de desempenho multitarefa, capacidade de generalizagao

e eficiéncia no processamento de grandes quantidades de informacao.

O treinamento e a manutengao operacional de modelos, como o GPT—5.1E| ou o
Gemini 2.5 Proﬁ , dependem de infraestrutura massivamente paralela, baseada em
clusters de GPUs e TPUs, além de investimentos financeiros extremamente elevados,
inacessiveis para a maior parte das organizagoes. Strubell, Ganesh e McCallum/ (2019))
destacam que tanto o custo energético quanto a exigéncia de hardware especializado
para sustentar modelos dessa magnitude criam barreiras financeiras significativas,
ultrapassando as capacidades tipicas de empresas de médio porte e centros de pesquisa

independentes.

Shttps://platform.openai.com/docs/guides/latest-model
Chttps://docs.cloud.google.com /vertex-ai/generative-ai/docs /models /gemini/2-5-pro?hl=pt-br

2.2 Arquiteturas de Acesso a LLM 8

2.2.1 SaaS

Diante dessa barreira econémica e técnica, o modelo de distribuicao de software
consolidou-se como o principal mecanismo de disponibilizagao desses sistemas ao
publico. Nesse paradigma, os provedores hospedam os modelos em infraestrutura de
nuvem e os disponibilizam por meio de interfaces acessiveis via internet, geralmente

mediante assinatura ou cobranca por uso token.

Um token representa o menor elemento linguistico processado pelo modelo,
podendo corresponder a palavras inteiras, subpalavras ou fragmentos de caracteres.
Em modelos modernos a contagem de tokens é realizada usando o algoritmo Byte

Pair Encoding (BPE]), que equilibra eficiéncia computacional e preserva¢ao seméantica

(SENNRICH; HADDOW: BIRCH]| 2016]).

Choudhary| (2007) observa que o[SaaS/reduz a necessidade de instalagao, manuten-
¢ao e escalabilidade local, democratizando o acesso a servigos altamente especializados.
A partir desse modelo de distribuicao, consolidaram-se dois modos principais de acesso
a esses sistemas, diferenciados fundamentalmente pelo ator que inicia e gerencia a

requisicao.

2.2.1.1 Interacao Humano-Modelo

Esta modalidade refere-se ao uso direto dos modelos por usuarios finais através
das aplicacoes oficiais mantidas por provedores, como ChatGPTﬂ e Geminﬂ Nesse
caso, a comunicagao é mediada por uma Graphical User Interface (GUI)), dispensando

configuragoes técnicas complexas.

Todo o fluxo de interacgao, da construcao da mensagem ao recebimento da resposta,
¢é abstraido pela aplicacao que gerencia o estado da conversa e a formatacao visual.
O objetivo aqui é oferecer uma experiéncia de uso acessivel, intuitiva e exploratoria,

onde a laténcia e a precisao sao percebidas subjetivamente pelo usuario humano.

"https : / /chatgpt.com/
8https : //gemini.google.com/app

2.2 Arquiteturas de Acesso a LLM 9

2.2.1.2 Interacao Sistema-Modelo

A interacao sistema-modelo corresponde ao consumo do [LLM| como um com-
ponente de software integrado a aplicacoes de terceiros via [API. Nesse cenario,
o [LLM| nao responde a um humano diretamente, mas atua como um modulo de

processamento dentro da arquitetura de um sistema cliente.

Diferentemente da interagao humano-modelo, essa abordagem possibilita auto-
magao em larga escala, integracao com fluxos de trabalho corporativos e controle
arquitetural rigoroso. E o padrao utilizado para construir assistentes virtuais custo-

mizados, analisadores de documentos e agentes auténomos.

2.2.2 Fluxos de Geragao

As[APIk utilizadas para acessar [LLMk nao constituem sistemas monoliticos. Pelo
contrario, sao compostas por multiplos endpoints, cada um projetado para atender
diferentes demandas de interacao, desempenho e contexto de uso. Esses padroes
de comunicagao estruturam como o back-end cliente realiza requisi¢oes e como o
servidor do [LLM] devolve as respostas. Para os propositos deste trabalho, destacam-se
quatro fluxos principais: Geracao Sincrona, Geragao por Streaming, Embeddings e

Arquitetura Retrieval-Augmented Generation (RAG)).

2.2.2.1 Geragao Sincrona

O fluxo de geragao sincrona segue o paradigma classico da web baseado no modelo
Representational State Transfer (REST]), nesse formato o back-end cliente envia uma
requisigao Hypertext Transfer Protocol (HIT'TP) contendo o prompt completo. A [AP]]
do [LLM] processa a solicitacao e mantém a conexao aberta até concluir totalmente a
geragao do texto, retornando o resultado em um tnico bloco. Trata-se de um fluxo
simples, amplamente compativel com arquiteturas ja existentes e adequado para
operacoes nao interativas. Entretanto, como todo o processamento ocorre antes da
devolugao da resposta, o usuario final pode experimentar alta laténcia perceptivel

em prompts mais complexos (XIAO; YANG, [2025).

2.2 Arquiteturas de Acesso a LLM 10

2.2.2.2 Geragao por Streaming

Para cenérios que exigem maior interatividade, como chatbots, sistemas de aten-
dimento ou aplicagoes que precisam apresentar respostas progressivamente, as [APIl
oferecem o modo streaming. Nesse padrao, o servidor do envia partes da
resposta, muitas vezes token a token, & medida que a geragao ocorre esse mecanismo
é viabilizado por recursos do protocolo [HTTPL O back-end cliente pode entao re-
transmitir imediatamente esses fragmentos ao fron-tend, proporcionando sensacao de

fluidez e reduzindo a laténcia percebida pelo usuario (XIAO; YANG] 2025).

2.2.2.83 Embeddings

Diferentemente dos fluxos de geracao textual, o endpoint de embeddings retorna
uma representacao matemaética do texto. Embeddings sao vetores densos de alta
dimensionalidade que capturam propriedades seméanticas, permitindo medir similari-
dade e relagoes contextuais entre trechos de texto (JURAFSKY; MARTIN| 2025)).
Nesse fluxo, o back-end cliente envia uma entrada textual e recebe o vetor corres-
pondente, que pode ser usado em aplicagoes como mecanismos de busca semantica,

recomendacao, categorizagao e deteccao de similaridade contextual.

2.2.2./ RAG

A abordagem [RAGI nao corresponde a um endpoint especifico, mas sim a um
padrao arquitetural que combina geracao de texto com recuperacao de conhecimento
externo, buscando superar limitagoes de memoria e atualizagao dos (GAO et
al., 2024). O padrao[RAG ¢ especialmente importante para aplicagoes que dependem

de dados privados, informagao atualizada ou contetidos altamente especializados.

O fluxo tipico de uma abordagem [RAG] é gerenciado por um componente orques-
trador e envolve: (i) o envio do prompt inicial ao endpoint de embeddings para sua
conversao em um vetor de busca; (ii) a consulta desse vetor a uma base externa,
geralmente um banco vetorial, para identificar documentos semanticamente rele-

vantes; (iii) a selegdo e incorporagao dos documentos recuperados como contexto

2.3 Engenharia de Prompt e Observabilidade de LLM 11

adicional ao prompt; (iv) o envio do prompt enriquecido ao endpoint de geragao, de
forma sincrona ou em streaming, permitindo respostas mais precisas, atualizadas e

contextualizadas.

A compreensao dos modelos de fronteira, das restri¢oes infraestruturais que
definem seu uso e dos diferentes modos de interacao oferecidos pelos provedores
estabelece a base necessaria para analisar como sistemas clientes podem explorar
essas capacidades de forma eficiente. Seja por meio de interfaces humanas ou
integracoes automatizadas via[APIl o comportamento dos[LILMk depende diretamente
da estrutura do prompt, da escolha do fluxo de geragao e do gerenciamento adequado
do contexto. Esses elementos, embora muitas vezes abstraidos no uso cotidiano,
tornam-se cruciais quando a aplicagao exige previsibilidade, controle e desempenho

consistente.

Nesse cenério, torna-se evidente que o simples acesso ao modelo nao é suficiente
para garantir resultados de qualidade ou estabilidade operacional. O desenvolvimento
de solugoes apoiadas em demanda praticas rigorosas de engenharia de prompts,
mecanismos de monitoramento continuo e estratégias de observabilidade capazes de

capturar métricas, falhas e variacoes de comportamento ao longo do tempo.

Esses fatores levam a proxima se¢ao, que aprofunda as metodologias de construcao,
avaliacao e acompanhamento de interagoes com modelos generativos, evidenciando
como tais praticas sao essenciais para o uso confiavel e sustentavel dessas tecnologias

em ambientes de producao.

2.3 Engenharia de Prompt e Observabilidade de LLM

Uma vez estabelecida na secao anterior a interagao sistema-modelo, esta secao
aprofunda-se nos desafios operacionais e nos novos paradigmas de gerenciamento
que emergem dessa interagao. Diferentemente de sistemas de software tradicionais,
cujo comportamento é deterministicamente definido por regras explicitas, métodos
formais e instrucoes rigidas, a interacao com [LLMk possui natureza probabilistica,

contextual e dependente de linguagem natural. Essa caracteristica modifica de ma-

2.3 Engenharia de Prompt e Observabilidade de LLM 12

neira significativa os mecanismos tradicionais de controle, depuragao e previsibilidade

do software.

Nesse novo cenario, duas disciplinas tornam-se centrais: Engenharia de Prompt e
Observabilidade de [LLMl A primeira atua como mecanismo priméario de controle
qualitativo e funcional sobre o comportamento do modelo; a segunda fornece os meios
quantitativos e analiticos para aferir, monitorar e otimizar esse comportamento em

ambientes produtivos.

2.3.1 Engenharia de Prompt

A Engenharia de Prompt é a disciplina dedicada ao projeto, construcao e otimi-
zagao das entradas textuais destinadas a orientar um modelo fundacional a produzir

respostas alinhadas ao objetivo do usuario (LIU et al., 2023b).

Em sistemas baseados em [LILLMk, o prompt funciona como uma interface de pro-
gramagao conceitual, na qual o desenvolvedor especifica comportamentos, restrigoes,
estilo e contexto por meio de linguagem natural. A estrutura, a clareza e o grau de
contexto incluido no prompt influenciam diretamente a qualidade, a precisao e o custo
operacional associado & geracao do modelo. O desempenho do modelo é altamente
sensivel a formulacao da entrada, o que motivou o surgimento de técnicas formais
de engenharia de prompt (ZHOU et al., |2023)) . Entre as principais abordagens,

destacam-se:

e Instrucao Direta: O modelo ¢é instruido a realizar uma tarefa sem nenhum

7

exemplo prévio como um prompt, e.g., “Iraduza este texto para o francés: |...]

(LIU; NEUBIG; ANDREAS], [2024).

e Instrucao com Exemplos: O modelo recebe, no proprio prompt, uma pequena
quantidade de exemplos de entrada e saida, e.g., “Q: 'maga’ é ’apple’. Q: "uva’
é |...|". Esta técnica aumenta significativamente a performance em tarefas

especificas (LIU; NEUBIG; ANDREAS| 2024)).

e Indugao a Cadeia de Pensamento: Consiste em instruir o modelo a “pensar

passo a passo”’ ou “explicar seu raciocinio” antes de dar a resposta final. [Wei et

2.3 Engenharia de Prompt e Observabilidade de LLM 13

al. (2022) demonstram que esta simples adigao ao prompt melhora significa-
tivamente a capacidade do modelo em tarefas de raciocinio complexo, como

problemas matemaéticos ou logicos.

e Padrdes de Prompt Avancados: Técnicas mais recentes, como ReAct, combinam
a Inducao a Cadeia de Pensamento com o uso de ferramentas, permitindo ao
LLM] decidir quando consultar uma [AP]Il externa como parte de seu processo

de pensamento para formular uma resposta (YAO et al.| 2022).

Um ponto essencial da engenharia de prompt é que ela nao se limita a fazer
a pergunta certa, mas constitui um processo iterativo de design, cujo impacto é
simultaneamente técnico e econémico. O contetido do prompt determina a quantidade
de tokens de entrada, a extensao e complexidade da resposta, a laténcia da geragao

de resposta e o custo financeiro da requisigao

Prompts baseados na técnica de Inducao a Cadeia de Pensamento tendem a
produzir respostas significativamente mais longas, ampliando o custo de saida. De
modo semelhante, fluxos baseados em [RAG] formam prompts compostos, integrando
instrugoes, pergunta do usuario e documentos recuperados, o que expande substanci-
almente o nimero de tokens de entrada. Assim, cada decisao de design de prompt
envolve trade-offs explicitos entre clareza, precisao, laténcia e custo. O prompt,
portanto, constitui a principal alavanca de controle disponivel ao desenvolvedor para
regular o comportamento do modelo. Essa relacao direta entre design, qualidade e
custo cria a necessidade de uma disciplina complementar: a observabilidade, que
permite mensurar, diagnosticar e otimizar sistematicamente os efeitos das estratégias

de engenharia de prompt em ambientes reais.

A medida que as técnicas de engenharia de prompt evoluem de instrugoes simples
para estruturas complexas como Indugao a Cadeia de Pensamento e ReAct, observa-se
um aumento proporcional na imprevisibilidade do comportamento do sistema. O
prompt deixa de ser uma variavel estatica para se tornar um componente dinamico que
impacta diretamente o consumo de recursos e a laténcia da aplicacao. Essa correlacao
direta entre a sofisticacao do design do prompt e seus custos operacionais evidencia

que o controle qualitativo, por si s6, é insuficiente. Torna-se imperativo, portanto,

2.3 Engenharia de Prompt e Observabilidade de LLM 14

estabelecer mecanismos quantitativos rigorosos para monitorar essas interagoes,

dando origem & disciplina de Observabilidade de [LLML

2.3.2 Observabilidade de LLM

O conceito de observabilidade tem origem na teoria de controle de |Kalman| (1960),
mas ganhou relevancia contemporanea na engenharia de software e em praticas
DevOps, onde é definido como a capacidade de inferir o estado interno de um sistema
a partir de suas saidas externas. Em sistemas tradicionais, essa observabilidade é

estruturada nos chamados trés pilares: métricas, logs e traces (SRIDHARAN]| 2018).

Entretanto, quando aplicada a sistemas baseados em [LLM] a observabilidade
assume uma complexidade inteiramente nova. As ferramentas tradicionais de ob-
servabilidade nao foram projetadas para lidar com as caracteristicas probabilisticas,
semanticas e financeiras que emergem do uso de [APIk de [LLMk. Esse novo cenério
exige a ampliagao da observabilidade para trés dimensoes adicionais: custo, qualidade

semantica e laténcia (HUYEN] [2022)).

2.3.2.1 Observabilidade de Custo

Em sistemas tradicionais, o custo de uma chamada de [API] ¢ computacionalmente
marginal e faturado de forma agregada, e.g., custo por hora do servidor. Em
integrados a [LLM], o custo financeiro ¢ variavel e direto, faturado por chamada com

base nos tokens processados.

A observabilidade de custo exige que o sistema registre a quantidade de tokens
no prompt e a quantidade de tokens na resposta para cada interagao, pois o custo é
determinado com base no consumo total tokens. O mapeamento de custos deve ser
realizado multiplicando o total de tokens pelo prego especifico do modelo, dessa forma
convertendo dados de uso técnico em valores financeiros (VELASCO; TSIRTSIS:
GOMEZ-RODRIGUEZ, [2025; [SUN et al., 2025)).

2.3 Engenharia de Prompt e Observabilidade de LLM 15

2.3.2.2 Observabilidade de Qualidade

Um sistema de software tradicional falha de forma binaria e explicita retornando o
codigo [HTTPl de status de falha ou sucesso. Uma [APIl de [LLM] por outro lado, pode
ser sintaticamente bem-sucedida, mas semanticamente falha. Para|Ji et al.| (2023))
a falha seméantica mais comum ¢é a “alucinacao”, onde o modelo gera informacoes
factualmente incorretas, mas de forma plausivel e confiante. Para mitigar esses riscos,
Liang et al| (2022), |[Chang et al.| (2023) sugerem métricas de avalia¢ao holistica e

feedback humano.

A observabilidade de qualidade deve, portanto, ir além dos codigos de status
[HTTP], buscando armazenar a carga ttil do prompt e resposta de cada interacao
para analises posteriores, correlacionar a avaliacao do usuario a cada interacao além
de monitorar o trafego em busca de dados sensiveis, toxicidade ou falhas em seguir

as instrucoes do sistema.

2.3.2.83 Observabilidade de Laténcia

A laténcia em uma [AP]l de [LLM] ¢ inerentemente superior e mais volatil do
que em uma [AP] tradicional, sendo influenciada por fatores dindmicos como o
tamanho do prompt, a complexidade instrucional e a quantidade de tokens gerados.
Essa caracteristica exige uma mudanca de paradigma na medi¢ao de performance,
priorizando a percepc¢ao do usuéario em detrimento apenas do tempo total de execucao.
Para compreender o impacto real na experiéncia do usuéario, a medicao de performance

é decomposta em trés métricas (GOEL et al., [2025)).

A Time To Last Token (I'TLI]) corresponde ao tempo total decorrido entre o
envio do prompt e o recebimento do tltimo caractere da resposta. E a métrica padrao
para chamadas sincronas, onde o sistema aguarda a conclusao total do processamento.
No entanto, como o [['TLT] é proporcional ao tamanho da resposta gerada, ele pode
variar drasticamente sem indicar degradagao na satde do servidor (GOEL et al.|

2025).

Outra métrica importante ¢ a Time To First Token (I'TET]) que representa o

2.3 Engenharia de Prompt e Observabilidade de LLM 16

intervalo de tempo que o usuério aguarda até visualizar o primeiro fragmento de
contetido. Em interfaces conversacionais, esta é a métrica critica de percepcao de
velocidade. Um [TTET] baixo cria uma sensacao de resposta imediata, influenciando

o usuério a cerca da capacidade de resposta do [LLM| (GOEL et al., 2025)).

Uma terceira métrica auxilia na avaliacao de laténcia, conhecida como Time
Between Tokens (BT ela mede o intervalo entre a geracao de tokens de saida
consecutivos de uma solicitacao e afeta a fluidez percebida da resposta, o que é
particularmente importante para aplicativos interativos, nos quais os usuarios esperam

um fluxo continuo e ininterrupto de conteudo gerado (GOEL et al., 2025]).

A implementacao eficiente desse sistema de observabilidade multifacetada exige
um ponto centralizado de coleta, agregacao e anélise de dados. Delegar essa respon-
sabilidade de forma distribuida entre microsservicos ou equipes de desenvolvimento
distintas nao apenas introduziria redundancias e inconsisténcias, como também
ampliaria o risco operacional ao dificultar auditorias, diagnoésticos e o monitoramento
continuo da qualidade das respostas geradas. Em um cenario no qual os ope-
ram como componentes criticos de aplicagoes sensiveis, a auséncia de um mecanismo
unificado de visao e controle compromete diretamente a confiabilidade do sistema

como um todo.

Essa constatagao evidencia um desafio estratégico que embora o ecossistema atual
ofereca ferramentas consolidadas, ele carece de solucoes que conciliem simplicidade
operacional, autonomia organizacional e suporte nativo as particularidades do uso
de modelos de linguagem em producdo. E justamente nessa lacuna que este trabalho

se 1nsere.

No capitulo seguinte, é apresentada a proposta de solucao, detalhando como
uma plataforma de observabilidade especializada para [LLLMk pode unificar métri-
cas, registros e fluxos de analise, fornecendo uma camada essencial de governanca,

rastreabilidade e confiabilidade para aplicagbes que dependem desses modelos.

Capitulo 3

Proposta

Com base na fundamentagao tedrica apresentada no Capitulo 2, que estabeleceu os
conceitos de [LLMk e a necessidade critica de observabilidade, este capitulo detalha a
proposta da solucao desenvolvida neste trabalho. O objetivo central é especificar uma
plataforma de gateway de observabilidade capaz de interceptar, auditar e gerenciar
as interacoes entre aplicacoes clientes e provedores de [[Al visando mitigar os desafios
operacionais de baixa visibilidade, imprevisibilidade de custos e laténcia através de

uma arquitetura que prioriza a soberania dos dados e a simplicidade de integracao.

A estrutura do capitulo organiza-se de forma progressiva, iniciando pela analise
das motivacoes praticas e de ferramentas de observabilidade de[LLMk, para identificar
as lacunas que justificam o desenvolvimento da ferramenta. Na sequéncia, define-se a
arquitetura modular da solugao, culminando na formalizagao da especificacao técnica
através dos requisitos funcionais, regras de negocio, casos de uso e modelagem de
dados, que estabelecem o contrato de comportamento esperado para a implementacao

descrita no capitulo seguinte.

3.1 Motivacao

Os [LLMk transcenderam o ambiente académico para se tornar um motor de

inovagoes disruptivas na industria. No entanto, a consolidagao dos ILLM| como

3.1 Motivacao 18

ferramenta de uso comercial em massa, catalisada pelo langcamento de ferramentas
como o ChatGPTﬂ em 2022, inaugurou um novo paradigma de engenharia de software
(RIO-CHANONA:; LAURENTSYEVA; WACHS] 2024). Empresas de todos os portes,
desde startups até gigantes tecnologicas, aceleraram a integracao desses modelos em

produtos que variam de copilotos de produtividade a sistemas de decisao complexos.

Organizagoes que integram a seus softwares enfrentam um cenério de “caixa-
preta”; onde as interagoes com as[APIs de [LLLMk sao fechadas e dificeis de monitorar,
uma vez que a hatureza proprietaria dos modelos impede o acesso ao seu funcio-
namento interno, comprometendo desta forma a auditoria dessa integragao (LIAO]
VAUGHAN] 2023). Os desafios decorrentes dessa falta de visibilidade manifestam-se

em diversas frentes criticas.

A dependéncia de[APIlde terceiros, cobradas por token, introduz uma variabilidade
financeira inexistente em softwares deterministicos tradicionais. Sem uma visibilidade
granular do consumo de recursos por requisigao, as organizagoes perdem a capacidade
de otimizar prompts ou alocar orcamentos de forma eficiente, resultando em despesas

imprevistas que podem comprometer a viabilidade econémica de projetos (DIAZ+

DE-ARCAYA et al 2024).

Nao menos critica ¢ a questao da confiabilidade e da qualidade semantica, [LLMk
. . o ~ «

sao mecanismos probabilisticos sem compreensao do mundo real, propensos a “alu-
cinacoes” que consiste na geragao de informagoes factualmente incorretas com alta
convicgao (JI et al., 2023)). Adicionalmente, [Bender et al.| (2021) argumentam que
esses modelos operam como “papagaios estocasticos”, copiando padroes linguisticos e
replicando vieses sociais presentes nos dados de treinamento. Essa tendéncia de gerar
contetdo enviesado ou incorreto representa um risco de reputacao e ético severo para

aplicagoes corporativas.

No ambito da protegao de dados, emergem vulnerabilidades criticas de seguranga
e privacidade, uma vez que os modelos podem inadvertidamente revelar informacoes
sensiveis ou facilitar ataques cibernéticos (LIAO; VAUGHAN| [2023)). A arquite-

tura de interacao dos ILLMI| expoe novas superficies de ataque, como a injecao de

Lhttps : //chatgpt.com/

3.2 Trabalhos Relacionados 19

prompt, classificada como a vulnerabilidade ntimero um no OWASP Top 10 for
LLM Applicationsﬂ. Segundo |Greshake et al.| (2023), a incapacidade do modelo
em distinguir instrugoes de sistema de entradas de usuario permite que comandos
maliciosos sobrescrevam diretrizes de segurancga, criando riscos de vazamento de

dados e manipulacao de comportamento.

As aplicacoes atuais raramente se limitam a uma tnica chamada de [LLM] elas
sao construidas como cadeias ou agentes autonomos que interagem com multiplas
ferramentas em ciclos iterativos de raciocinio e agao (XI et al., [2023). Essa arquitetura
gera historicos de contexto extensos, exacerbando problemas como o fenémeno lost
in the middle, onde o modelo falha em recuperar informacoes relevantes no meio de
um contexto longo (LIU et al. 2023a). Rastrear a origem de erros em tais sistemas
distribuidos utilizando apenas ferramentas de logs convencionais torna-se inviavel,

uma vez que a interagao dindmica entre multiplos componentes dificulta a descoberta

da causa das falhas (LIAO; VAUGHAN| 2023)).

Esses desafios interconectados, custos imprevisiveis, alucinacoes, vulnerabilidades
de seguranca e complexidade de agentes, formam a motivagao central para este
trabalho. Eles evidenciam a necessidade urgente de uma nova classe de ferramentas
de engenharia: plataformas de observabilidade especializadas em [LLM5, capazes de
transformar a “caixa-preta” probabilistica das interacoes com [LILMk em um sistema

transparente, gerenciavel e confiavel.

3.2 Trabalhos Relacionados

Para enderecar os complexos desafios operacionais de baixa visibilidade, custo
e laténcia descritos na seg¢ao anterior, o mercado de tecnologia desenvolveu um
vasto ecossistema de ferramentas de observabilidade. O panorama atual incluindo
desde extensdes de plataformas de monitoramento tradicionais, como Datadog]

até solugoes especializadas em avaliacao e depuracao, como Opikﬁ e Lunaryﬂ No

Zhttps : //genai.owasp.org/resource/owasp — top — 10 — for — llm — applications — 2025/
3https : //docs.datadoghg.com/llm,bservability/

Ahttps : | Jwww.comet.com/site/products/opik/

Shttps : / /lunary.ai/

3.2 Trabalhos Relacionados 20

segmento de orquestracao e gateways, ferramenta como Portkeyﬂ disputa espago com

funcionalidades avancadas de roteamento.

No entanto, uma analise exaustiva de todas as ferramentas disponiveis excederia
o escopo deste trabalho. Foram selecionadas quatro plataformas que ilustram de
forma representativa as principais abordagens de engenharia vigentes: a abordagem
ecossistémica proprietaria, a plataforma de engenharia de c6digo aberto, a arquitetura

baseada em gateway e a instrumentagao baseada em padroes abertos.

3.2.1 LangSmith

O LangSmithﬂ representa a referéncia atual em solugoes proprietarias fortemente
acopladas a um ecossistema de desenvolvimento. Projetado para operar em conjunto
com os frameworks LangChainﬂ e LangGrapkﬂ, sua arquitetura distingue-se por
implementar um modelo de dados hierarquico capaz de renderizar a arvore de execugao
completa de cadeias complexas e agentes autonomos. Diferentemente de ferramentas
tradicionais, o LangSmith permite a inspecao profunda de passos intermediarios de
raciocinio e chamadas de ferramentas , além de suportar nativamente datasets de

referéncia para testes de regressao automatizados.

Contudo, essa integracao profunda cobra seu preco em flexibilidade. Embora
ofereca uma experiéncia fluida para usuarios do ecossistema LangChain, a ferramenta
apresenta riscos significativos de aprisionamento tecnolégico. Por ser fundamental-
mente uma solugao SaaS de cddigo fechado, exige que dados sensiveis trafeguem para
a infraestrutura da LangChain Inc., o que pode violar requisitos de conformidade em
setores regulados. Além disso, sua eficicia e facilidade de instrumentacao diminuem

substancialmente quando utilizada com stacks tecnologicas agnosticas.

Shttps : //portkey.ai/

Thttps : /| Jwww.langchain.com/langsmith/observability
8https : //www.langchain.com/

Onttps : | Jwww.langchain.com/langgraph

3.2 Trabalhos Relacionados 21

3.2.2 Langfuse

Posicionando-se como a alternativa agnostica e de cédigo aberto, a LangfuseEl
adota uma arquitetura projetada para desacoplar a instrumentacao da anélise. A pla-
taforma utiliza DKk assincronos que enviam eventos de telemetria em segundo plano,
garantindo que o monitoramento nao introduza laténcia na aplicagao principal. Seu
modelo de dados é centrado no trace, enriquecido com metadados de custo, laténcia
e pontuagoes de qualidade, permitindo avaliagoes hibridas via ¢LLM-as-a-judge’’,
que consiste na avaliacao da resposta por um [LILM] diferente do qual consultado, ou

feedback humano.

A grande vantagem da Langfuse reside na soberania de dados, por ser open source
suporta a auto-hospedagem via contéineres Docker, possibilitando que empresas
mantenham todos os prompts e respostas dentro de sua propria nuvem privada. Essa
flexibilidade, no entanto, transfere a complexidade operacional para o usuario. No
modelo de auto hospedagem, a responsabilidade pela manutencao do banco de dados
e pela escalabilidade da ingestao de eventos recai inteiramente sobre a equipe de
engenharia da organizacao, elevando o custo total de propriedade em cenarios de

alto volume.

3.2.3 Helicone

O Heliconﬂ materializa o conceito de gateway, posicionando-se como uma camada
de infraestrutura critica que atua como um orquestrador de trafego ativo entre as
aplicagoes clientes e os provedores de [LLMl Ao centralizar multiplas integragoes em
um ponto tnico de entrada, a ferramenta abstrai a complexidade de gestao de [APTs
e injeta funcionalidades avancadas diretamente na camada de rede. Construido sobre
uma infraestrutura de edge computing, o Helicone implementa estratégias de caching
na borda, permitindo que requisi¢oes frequentes sejam respondidas instantaneamente
para reduzir custos e laténcia, além de gerenciar politicas de resiliéncia, como novas

tentativas e fallbacks, e governanca de acesso. Toda essa gestao é realizada de forma

Ohttps : / /lang fuse.com/
Uhttps : / Jwww.helicone.ai/

3.2 Trabalhos Relacionados 22

transparente, sem a necessidade de instrumentacao intrusiva no cédigo da aplicagao,

bastando o redirecionamento da URL base do cliente HTTP.

Entretanto, essa arquitetura de intermediacao introduz compensagoes arquitetu-
rais importantes. A consolidacao do trafego transforma o gateway em um ponto tnico
de falha na topologia da rede, onde sua indisponibilidade pode interromper o acesso
aos provedores de [LLMk. Além disso, a necessidade operacional de descriptografar
e inspecionar o contetido das mensagens para funcionalidades de cache e observa-
bilidade exige um alto nivel de confianca no provedor ou a op¢ao mandatoéria pela
auto-hospedagem para preservar a confidencialidade de dados sensiveis em ambientes

corporativos.

3.2.4 Phoenix

Desenvolvida pela AriZEEL a Phoenixﬂ representa a abordagem de observabilidade
focada na Ciéncia de Dados e na depuragao profunda de sistemas [RAGl Diferente
de plataformas puramente de engenharia, a Phoenix adota uma filosofia “local-first”,
sendo frequentemente executada diretamente em ambientes de desenvolvimento como
Jupyter Notebooks antes de ser implantada em produgao. Sua arquitetura é projetada
para a visualizacao de dados de alta dimensionalidade, permitindo a inspe¢ao nao

apenas do texto gerado, mas dos vetores subjacentes.

O grande diferencial arquitetural da Phoenix ¢ seu motor de visualizacao de
embeddings. Isso permite que engenheiros identifiquem visualmente clusters de
alucinagoes ou lacunas na base de conhecimento recuperada, algo impossivel de
detectar apenas com logs textuais. Contudo, sua origem focada em notebooks pode
torna-la menos intuitiva para engenheiros de software tradicionais que buscam apenas
monitoramento de laténcia. Embora a versao open source seja poderosa para analise
local, a persisténcia de dados de longo prazo e a colaboragao em equipe direcionam
o usuario para a plataforma comercial, criando uma barreira de entrada para o

monitoramento continuo em producao sem custos associados.

Lhttps : | Jarize.com/
Bhttps : | /phoeniz.arize.com/

3.2 Trabalhos Relacionados 23

3.2.5 Sintese Comparativa

A analise das plataformas LangSmith, Langfuse, Helicone e Phoenix revela que o
ecossistema de observabilidade para [LLLMs ¢ marcado por abordagens distintas, cada
uma otimizando um conjunto especifico de trade-offs entre integracao, soberania de

dados, facilidade de instrumentacao e profundidade analitica.

Essas plataformas demonstram que nao existe uma solugao universal: cada
abordagem resolve uma parte distinta do problema. Conforme detalhado na Tabela
[3.1 enquanto LangSmith e Helicone priorizam simplicidade operacional por meio
de centralizacao seja de ecossistema ou de trafego, Langfuse e Phoenix apostam
em maior abertura e flexibilidade, porém transferindo responsabilidades ao usuéario.
Essa diversidade expoe uma lacuna no ecossistema: a auséncia de uma solucao
que concilie leveza operacional, soberania de dados, independéncia de ecossistema
e suporte nativo as necessidades especificas de aplicacdes baseadas em [[LMk. E

justamente nessa interse¢ao que a proposta deste trabalho se insere.

Tabela 3.1: Tabela Comparativa das Solucoes Represen-

tativas de Observabilidade

Caracteristica| LangSmith | Langfuse Helicone Phoenix

Funcionalidade | Integracao Avaliagao de | Otimizagao de | Diagnostico

diferencial com Lang- | prompt custo profundo
Chain

Soberania de | Baixa Alta Baixa Alta

Dados

Complexidade | Alta Média Muito baixa | Média

de Integracao

Auto- Nao Sim Sim Sim

hospedagem

Fonte: Elaborado pelo autor.

3.3 Proposta de Sistema 24

3.3 Proposta de Sistema

Apobs a analise dos desafios operacionais gerados pela integragao de softwares
com [LLMk e do ecossistema de ferramentas existentes, este trabalho propoe o
desenvolvimento de uma plataforma de observabilidade com diferenciais estratégicos.
O estudo dos trabalhos relacionados revelou um mercado composto por solucoes
robustas, porém frequentemente associadas a alta complexidade, modelos de negocio
restritivos ou forte dependéncia de ecossistemas especificos. Esses fatores evidenciam
uma lacuna para uma solucao que priorize simplicidade, soberania dos dados e

acessibilidade.

Diante desse cenario, a proposta deste trabalho concentra-se na criacao de um
gateway de observabilidade leve e de codigo aberto, projetado para implantagao
flexivel e que permita as equipes manter controle sobre seus dados e infraestrutura.
A solugao tera foco no monitoramento das métricas criticas que afetam a viabilidade
de aplicacoes baseadas em [LLMk, como custo, laténcia e consumo de tokens, com
o objetivo de reduzir a barreira de entrada e proporcionar visibilidade operacional
sem que equipes precisem lidar com custos elevados ou complexidade excessiva de

integracao.

Embora a arquitetura de referéncia aqui proposta tenha sido concebida para
ser agnostica e extensivel a multiplos provedores de [LLM] este trabalho delimita o
escopo de implementacao e validacao a[AP]l GeminiE[Esta decisao estratégica visa
viabilizar a prova de conceito focando na profundidade da observabilidade em um
Ginico ecossistema, servindo como base para futuras expansoes de adaptadores para

outros provedores

3.3.1 Mobdulos do Sistema

Para materializar esses objetivos, a solucao proposta adota uma abordagem
centrada em governanca e observabilidade de interagoes com [LLMk. O sistema atua

como um gateway de [API centralizado que fornece controle de acesso, auditoria

YUhttps : / Jaistudio.google.com/

3.3 Proposta de Sistema 25

detalhada e monitoramento de custos. A arquitetura foi concebida de forma modular,
separando claramente as responsabilidades do sistema, conforme detalhado nas

subsecgoes seguintes.

3.3.1.1 Autenticacio e Autorizacao

A seguranca da plataforma é alicercada em um modulo robusto responsavel por
verificar a identidade dos usuarios e governar suas permissoes. Este componente
centraliza o fluxo de entrada no sistema e a distribuicao de privilégios, garantindo

que funcionalidades sensiveis sejam acessadas apenas por entidades legitimas.

O sistema implementa um mecanismo de autenticagao hibrido, capaz de operar
tanto com credenciais locais, como e-mail e senha, quanto com provedores externos
de identidade. Essa flexibilidade permite integrar diferentes fluxos de autenticagao

sem comprometer a seguranga ou a compatibilidade com ambientes corporativos.

A arquitetura de permissoes é estruturada segundo o modelo de Role-Based
Access Control (RBAC), que define dois perfis nativos responsaveis por moldar a
interface de gerenciamento. O perfil de administrador possui acesso irrestrito as
funcionalidades de governanca, podendo auditar, criar e revogar contas de usuarios.
Ja o usuario possui escopo limitado & administracao de seus proprios recursos, como

dados pessoais e credenciais de segurancga, acessiveis por meio de seu painel dedicado.

Integrado a este modulo estd o gerenciamento de tokens de [APIl Diferentemente
do acesso via interface web, a interacao com o gateway de exige credenciais de
maquina de longa duragao. A plataforma delega aos usuérios a autonomia para gerar
e revogar seus proprios tokens de[API que atuam como as chaves de autenticagao

para as requisi¢oes programaticas processadas pelo sistema.

3.83.1.2 Gateway de LLM

Este modulo constitui o nicleo funcional da solugao, atuando como um gateway
centralizado para as interagoes com modelos de linguagem. A arquitetura do proces-

samento foi projetada priorizando a resiliéncia, o sistema utiliza internamente uma

3.3 Proposta de Sistema 26

fila de tarefas para encapsular a logica de comunicac¢ao externa. Essa abordagem
permite a implementacao de mecanismos de tolerancia a falhas, como novas tentativas
automaticas e backoff exponencial, mantendo, contudo, a interface sincrona para
o cliente. O controlador aguarda a conclusao do processamento interno antes de

retornar a resposta, preservando a semantica padrao do ciclo de requisi¢ao-resposta

do protocolo HTTP.

Neste modulo, a plataforma atua como um componente de mediacao direta para
aplicacoes, operando através de um fluxo continuo que se inicia com a interceptacao
da requisi¢ao formatada nativamente pelo SDKl Simultaneamente ao trafego de
dados, o sistema realiza o processamento interno, extraindo o payload e registrando
os dados de observabilidade antes de encaminhar a solicitagao a[APIl real do [LLMl O
ciclo encerra-se com a adaptagao de resposta, etapa crucial na qual o sistema formata
o retorno do modelo para espelhar com exatidao a estrutura de dados esperada pelo
SDK], assegurando uma integracao transparente. Especificamente para este trabalho,
o modulo de adaptacao sera configurado para mimetizar os contratos de interface
da [API Gemini, interceptando e traduzindo suas estruturas de requisicao e resposta

especificas

Essa abordagem assegura que aplicagoes projetadas para o uso de SDKE de [LLME
possam adotar a plataforma de observabilidade sem necessidade de refatoracao de

codigo, bastando a reconfiguracao da base URL no cliente HT'TP do [SDK

3.3.1.8 Auditoria e Engenharia de Custos

Imediatamente ap6s o processamento da requisi¢ao, o sistema aciona o pipeline de
auditoria, operacionalizando o objetivo central de transformar a baixa visibilidade de
interacoes com um [LLM] em um processo transparente e auditavel. Diferentemente
de um proxy, que apenas direciona os dados, a plataforma garante a persisténcia
estruturada de cada interacao, independentemente de seu desfecho, seja ele sucesso

ou falha.

O registro de auditoria nao sera apenas um log textual, mas um modelo de dados

relacional que captura trés dimensoes criticas para a observabilidade: os dados da

3.3 Proposta de Sistema 27

transagao, que incluem o identificador do usuario, o payload de entrada e a resposta
completa gerada pelo modelo, garantindo soberania e possibilidade de auditoria
forense ao serem mantidos na propria infraestrutura; as métricas de desempenho,
que abrangem o codigo de status [HT TPl e a laténcia end-to-end em milissegundos,
permitindo identificar gargalos de rede ou degradacoes do provedor; e as métricas de
custo, produzidas por um motor de precificacao que, que apds extrair a contagem
total tokens, consulta um catalogo interno que diferencia valores entre tokens de
entrada e saida para calcular e registrar com precisao o custo financeiro de cada

transacao.

3.3.1.4 Dashboard

Para converter os dados brutos de auditoria em diagnostico, a plataforma dispo-
nibiliza um dashboard analitico. Esta interface atua como a camada de apresentacao,
permitindo que gestores e desenvolvedores visualizem o comportamento das aplicagoes

de [Al em tempo real.

A interface organiza as informagoes em trés niveis de granularidade: os indicadores
de desempenho, que apresentam métricas agregadas como custo total acumulado,
volume de requisi¢oes, taxa de erro e laténcia média para uma avaliacao imediata
da satude do sistema; a analise temporal e de tendéncias, composta por graficos de
séries temporais que revelam padroes de consumo e possiveis anomalias, incluindo a
evolucao diaria de custos, a distribuicao dos cédigos de status e o comportamento
da laténcia ao longo do tempo; e a inspecgao granular, oferecida por uma interface
de exploracao de logs que exibe o histérico completo das interagoes, permitindo
examinar cada transacao individual com seus prompts e respostas, o que é essencial

tanto para auditorias de qualidade quanto para processos de depuragao.

3.3.2 Requisitos Funcionais

Os Requisitos Funcionais (RE]) constituem a especificagdo comportamental do
software. Segundo |Sommerville| (2011)), estes requisitos sao declaragoes dos servigos

que o sistema deve fornecer, de como o sistema deve reagir a entradas especificas e

3.3 Proposta de Sistema 28

de como deve se comportar em situagoes particulares. Eles definem as capacidades
operacionais da plataforma, cobrindo desde a autenticacao até a visualizacao de

métricas. A Tabela apresenta a lista completa das funcionalidades implementadas

no sistema.
Tabela 3.2: Tabela de Requisitos Funcionais

1D Requisito Descrigao

RF-01 | Cadastrar Usué- | O sistema deve permitir que um novo usuério se ca-

rio dastre fornecendo nome, e-mail e senha.

RF-02 | Recuperar Senha | O sistema deve permitir que o usuario solicite e re-
defina sua senha através de um link de recuperacao
seguro enviado por e-mail.

RF-03 | Encerrar Sessao | O sistema deve permitir que um usuario autenticado
encerre sua sessao.

RF-04 | Diferenciar Pa- | O sistema deve diferenciar os usuarios em dois papéis:

péis usuéario e administrador.

RF-05 | Listar Usuarios | O sistema deve permitir que administradores listem
todos os usuérios cadastrados na plataforma.

RF-06 | Criar Usuario O sistema deve permitir que administradores criem
novos usuérios manualmente.

RF-07 | Editar Usuario O sistema deve permitir que administradores editem
as informacoes de qualquer usuério.

RF-08 | Excluir Usuario | O sistema deve permitir que administradores excluam
usuarios da plataforma.

RF-09 | Personificar O sistema deve permitir que administradores “perso-

Conta nifiquem” a conta de um usuario para fins de suporte.

RF-10 | Gerenciar Perfil | O sistema deve permitir que qualquer usuario auten-
ticado gerencie seu proprio perfil.

RF-11 | Gerar Token O sistema deve permitir que um usuério autenticado
gere tokens de [API] para interagir com o gateway.

3.3 Proposta de Sistema 29
1D Requisito Descrigao

RF-12 | Listar Tokens O sistema deve permitir que um usuéario autenticado
liste todos os seus tokens de [AP]] gerados.

RF-13 | Revogar Token | O sistema deve permitir que um usudario autenticado
revogue seus tokens de [APIl a qualquer momento.

RF-14 | Autenticar O sistema deve autenticar todas as requisi¢oes de [AP]l

Requisigoes através do token gerado.
RF-15 | Disponibilizar O sistema deve disponibilizar uma interface de co-
Interface municacao compativel com o que mimetize o
formato oficial do provedor.
RF-16 | Adaptar Requi-| O sistema deve ser capaz de interpretar a requisi¢ao no
sicao formato nativo, extrair os dados e formatar a resposta
preservando o contrato do SDK.

RF-17 | Consultar Cache | Antes de encaminhar a requisi¢ao ao provedor, o sis-
tema deve consultar o banco de dados buscando por
uma requisicao que tenha o mesmo prompt e modelo,
retornando a resposta armazenada se encontrada.

RF-18 | Aguardar Pro- | O sistema deve aguardar o resultado do processamento

cessamento interno para retornar a resposta na mesma requisi¢ao
HTTP.
RF-19 | Registrar Audi- | O sistema deve registrar cada requisicao feita a [AP]l
toria do [LLMl em um histérico de auditoria, associando-a
ao usuario.

RF-20 | Persistir Payload | O registro de auditoria deve armazenar os dados com-
pletos da requisigao e da resposta gerada.

RF-21 | Registrar Desem- | O sistema deve registrar as métricas de desempenho,

penho incluindo status e laténcia da [AP]] externa.

RF-22 | Contabilizar To-| O sistema deve registrar as métricas de uso de tokens

kens de entrada e saida para cada requisicao.

3.3 Proposta de Sistema 30
1D Requisito Descrigao

RF-23 | Calcular Custos | O sistema deve calcular o custo monetario exato de

cada requisicao com base nos tokens e na tabela de
precos.

RF-24 | Apresentar O sistema deve apresentar um dashboard contendo es-
Dashboard Anali- | tatisticas agregadas e graficos temporais sobre custos,
tico volume de requisicoes e laténcia.

RF-25 | Visualizar Hist6- | O sistema deve permitir que o Usuério visualize seu
rico historico pessoal de requisigoes em lista.

RF-26 | Inspecionar De-| O sistema deve permitir que o Usuario inspecione os
talhes detalhes de uma requisicao especifica.

RF-27 | Visualizar Dados | O sistema deve permitir que o Administrador visualize
Globais o dashboard com dados agregados de todos os usuérios.

RF-28 | Filtrar Métricas | O sistema deve permitir que o Administrador filtre os

dados do dashboard para visualizar métricas de um
usuario especifico.
3.3.3 Regras de Negocio

Para assegurar que a plataforma atenda aos objetivos de governanga e observabili-
dade estabelecidos, o comportamento do sistema foi estruturado sobre um conjunto de
Regras de Negocio (RNJ). Conforme define [Sommerville] (2011)), estas regras derivam
das politicas organizacionais e do dominio da aplicacao, impondo restrigoes sobre
o funcionamento do sistema para garantir que ele opere em conformidade com os
processos e padroes da empresa. A Tabela apresenta a especificacao consolidada

das regras e sua relacao direta com os [RE correspondentes.

3.3 Proposta de Sistema 31
Tabela 3.3: Tabela de Regras de Negocio
ID Regra de | Descrigao RFs
Negocio
RNOO1 | Autenticacao | O sistema deve aceitar autenticagao via provedor | RFO01,
Hibrida de identidade federada e credenciais locais. RF05
RNO002 | Unicidade de | Nao é permitido o registro de miltiplos usuarios | RF01
Conta com o mesmo endereco de e-mail.
RNO003 | Recuperagao | A redefinicao de senha deve ocorrer exclusiva- | RF02
Segura mente via link temporéario e de uso tnico enviado
ao e-mail cadastrado.
RN004 | Hierarquia O sistema deve distinguir estritamente as permis- | RF06,
de Papéis soes entre os papéis de administrador e usuéario. | RF09,
RF12
RNO005 | Gestao Ad- | Apenas usuarios com papel de administrador po- | RF07,
ministrativa | dem listar, criar ou personificar outros usuarios. | RFO08,
RF09,
RF10,
RF11
RNO006 | Soberania de | Usuarios autenticados devem ter autonomia para | RF14,
Tokens gerar e revogar seus proprios tokens de [AP]l . RF15,
RF16
RNO007 | Validagao de | O sistema deve interceptar requisigoes e exigir | RF15,
Token autenticacao via cabecalho Authorization, vali- | RF16
dando integridade antes do processamento.
RNO008 | Campos Requisi¢oes devem conter, obrigatoriamente, o | RF16
Obrigatorios | corpo da mensagem e a identificagao do modelo
de destino.

3.3 Proposta de Sistema 32
ID Regra de | Descricao RFs
Negocio
RNO009 | Estratégia O sistema deve verificar a existéncia de prompt | RF17,
de Cache prévio idéntico. Em caso de correspondéncia, | RF20
deve retornar a resposta armazenada imediata-
mente.
RNO10 | Resiliéncia e | Em caso de falha de comunicagao com o prove- | RF18
Retries dor, o sistema deve realizar até trés tentativas
de reexecucgao com estratégia de exponential bac-
koff.
RNO11 | Processar In- | O processamento da interacao externa deve ser | RF18
teracao em | encapsulado em uma fila de jobs interna, man-
Fila tendo a interface sincrona para o cliente.
RNO12 | Falha Defini- | Ap6s o esgotamento das tentativas de reexe- | RF18,
tiva cucao, o sistema deve registrar o erro perma- | RF24
nentemente e retornar uma mensagem de falha
formatada.
RNO13 | Persisténcia | Todas as transagoes processadas pelo sistema, | RF21
Mandatoéria | sejam elas bem-sucedidas, falhas ou provenien-
tes de cache, devem ser registradas de forma
persistente no banco de dados.
RNO014 | Metadados O registro deve conter, minimamente: ID do | RF23,
de Auditoria | usuario, timestamp, laténcia , status code, origem | RF24,
da resposta, prompt e resposta. RF28
RNO15 | Calculo de | O sistema deve calcular o custo financeiro | RF23,
Custo baseando-se na contagem de tokens multipli- | RF24
cada pela tabela de precos vigente. Respostas
de cache devem ter custo zero ou reduzido.

3.3 Proposta de Sistema 33
ID Regra de | Descricao RFs
Negocio
RNO16 | Privacidade | O administrador tem acesso a métricas globais | RF25,
e Segregacao | e individuais. Contudo, o acesso ao contetido | RF26,
bruto das transacoes, histoérico de requisicoes e | RF27,
respostas, é restrito exclusivamente ao usuario | RF28

proprietario.

3.3.4 Casos de Uso

Para [Sommerville] (2011)), casos de uso sdo uma técnica fundamental de modela-

gem de requisitos que descreve as interagoes entre os usuarios e o sistema, focando

em como o software deve responder a estimulos externos para alcancar um objetivo

especifico. Eles servem como uma ponte entre os requisitos funcionais abstratos e

a implementacao técnica, fornecendo um contexto narrativo para a validacao das

regras de negocio. A seguir segue os principais casos de uso do sistema.

UCO01: Cadastrar Usuario

Ator Principal: Usuério

Descrigao: Permitir que um usuério crie uma conta fornecendo nome, e-mail e

senha véalidos.

Pré-condigao:

Po6s-condigao:

Fluxo Principal:

O usuério nao possuir conta no sistema.

Conta criada no sistema.

1. O usuario acessa a pagina de cadastro.

2. O sistema exibe o formulério com os campos de nome, e-mail e senha.

3. O usuario preenche os dados e submete o formulario.

3.3 Proposta de Sistema 34

4. O sistema valida a unicidade do e-mail e a complexidade da senha.
5. O sistema cria a nova conta com perfil usuério.

6. O sistema autentica o usuario e o redireciona para a péagina de dashboard.

Fluxo Alternativo (5): E-mail invélido ou ja cadastrado

1. O sistema detecta que o e-mail informado ja esta cadastrado ou possui for-
mato invélido, exibe uma mensagem de erro e destaca o campo para correcao

retornando ao passo 2 do Fluxo Principal.

Fluxo Alternativo (5): Senha nao atende os critérios minimos de seguranca

1. O sistema detecta que que a senha nao atingiu os critérios minimos, destacando

0 campo para corre¢ao e retorna para passo 2 do Fluxo Principal.

UCO02: Fazer Login
Ator Principal: Usuério
Descrigao: Permitir que um usuario inicie uma sessao no sistema.

Pré-condicao: O usuario deve possuir conta ativa no sistema ou conta do Google

ativa.
Po6s-condigao: Usuario autenticado e direcionado para a pagina de Dashboard.

Fluxo Principal:

1. O usuario acessa a pagina de login.

2. O sistema apresenta o formulario de credenciais com os campos para e-mail e

senha e o botao “Entrar com Google”.
3. O usuério insere as credenciais locais, e-mail e senha, e confirma.

4. O sistema valida as credenciais locais.

3.3 Proposta de Sistema 35

5. O sistema gera a sessao de acesso e redireciona para a pagina de dashboard.

Fluxo Alternativo (2): Login via Google

1. No passo 2 do Fluxo Principal, o usuario seleciona a opc¢ao “Entrar com Google”.
2. O sistema redireciona o usuério para a autenticagao do provedor externo.

3. O sistema recebe o token de confirmagao do Google.

4. O sistema valida o token e identifica a conta do usuéario.

5. O fluxo retorna ao passo 5 do Fluxo Principal.

Fluxo Alternativo (3): Credenciais Invalidas

1. No passo 3 do Fluxo Principal, o usuario insere e-mail ou senha incorretos.
2. O sistema tenta validar as credenciais.

3. O sistema identifica que as credenciais sao invélidas.

4. O sistema exibe a mensagem: “E-mail ou senha invalidos.”.

5. O sistema retorna ao passo 2 do Fluxo Principal.

UCO03: Gerar Token de API
Ator Principal: Usuério

Descrigao: Permitir que um usuério crie token para realizar a integracao com o

sistema de observabilidade.
Pré-condicao: O usuario deve possuir sessao ativa no sistema.
Pés-condicao: Token gerado.

Fluxo Principal:

3.3 Proposta de Sistema 36

1. O usuario acessa a pagina de* Tokens de API” nas configuragoes.

2. O sistema lista os tokens ativos.

3. O usuério seleciona “Gerar Novo Token” e define um nome para identificacao.
4. O sistema gera um novo Bearer Token e o exibe uma tnica vez.

5. O usuério copia e armazena o token em local seguro.

UCO04: Enviar Requisicao
Ator Principal: Sistema Cliente

Descrigao: Permitir que um sistema cliente envie requisicoes para uma [APIl de

[LLM através do sistema.

Pré-condigao: O sistema cliente deve possuir um token de [APIl do sistema e ter

ele integrado a sua requisigao.
Pés-condicao: O sistema cliente recebeu a resposta de seu prompt.

Fluxo Principal:

1. O sistema cliente envia uma requisi¢ao para o endpoint do sistema usando o

EDKI do seu provedor de [LLMl

2. O sistema intercepta a chamada e verifica se existe token do sistema ativo no

cabecalho da chamada.

3. O sistema verifica se no banco de dados nao existe uma requisigao bem sucedida

que contenha o mesmo prompt e modelo.
4. O sistema enfileira a requisicao em um job interno para processamento.
5. O worker processa o job, repassando a chamada & [AP] oficial [LLM]

6. O sistema recebe a resposta do provedor de [LLMl

3.3 Proposta de Sistema 37

7. O sistema calcula o custo baseado nos tokens do [LLM] trafegados e persiste os

logs de auditoria e as métricas de laténcia.
8. O sistema retorna a resposta ao cliente no formato JavaScript Object Notation
(JSON) exato esperado pelo [SDK

Fluxo Alternativo (3): Existe Cache para a Requisigao

1. Se existir requisi¢ao anterior bem sucedida que possui prompt e modelo idénticos,

o sistema busca a resposta que ela teve e retorna para a requisicao atual.
Fluxo Alternativo (5): Falha e Retentativa
1. Se a[APIl do [LLMI falhar, o sistema aplica a estratégia de Backoff Ezponencial

e retenta a operacao até 3 vezes.

2. Se a falha persistir apos as tentativas, o sistema registra o erro definitivo e

retorna o codigo do erro ao cliente.

UCO05: Visualizar Detalhes de uma Interagao
Ator Principal: Usuério

Descrigao: Permitir que um usuéarios visualize a requisicao e resposta integral

de uma interagao com [LLM]

Pré-condicao: O usuario deve estar autenticado no sistema, e ter consumido

um token de [APIl
Pés-condicao: O usuério visualiza o contetido completo da requisi¢ao e resposta.

Fluxo Principal:

1. O usuario acessa a pagina de histoérico.

2. O sistema exibe a lista de todas as interacoes que o usudrio teve com uma [AP]l

de ILLM| em que usou o token do sistema.

3.3 Proposta de Sistema 38

3. O usuario encontra a interacao desejada

4. O usuario clica no botao de agoes da interacao que direciona para a pagina de

detalhes.

5. O usuério é direcionado para a pagina de detalhes da interacao.

UC06: Promover Usuario a Administrador

Ator Principal: Administrador

Descrigao: Permitir que um administrador promova um usuario a administrador.
Pré-condicao: O administrador deve estar autenticado no sistema.
Pés-condicao: Um usudrio recebe privilégios se tornando um novo administrador.

Fluxo Principal:

1. O administrador acessa o painel “Usuarios”.
2. O sistema lista todos os usuarios cadastrados na plataforma.
3. O administrador seleciona um usuério e clica no botao de editar.

4. o administrador edita as configuracoes de perfil do usuario elevando seus

privilégios para administrador

5. O sistema aplica a alteragao solicitada e atualiza as configuracoes do usuério.

3.3.5 Modelagem de Dados

A modelagem de dados desempenha, um papel fundamental na arquitetura deste
sistema de observabilidade, sendo responsével por traduzir as necessidades abstratas
de auditoria, custos e governanga em um esquema logico coerente. A natureza critica

dos dados processados envolvem desde credenciais de seguranga e controle de acesso

3.3 Proposta de Sistema 39

até o contetdo sensivel de prompts e respostas de [LLMk,o modelo foi projetado para

assegurar a atomicidade das transagoes e a consisténcia dos relacionamentos.

language_models
reset_password_tokens

id

id provider
user_id model_name
token input_price
expires_at output_price
created_at created_at
updated_at updated_at
tokenable_id id user_id
type role_id language_model_id
name full_name request
hash email response
abilities password status
last_used_at avatar_url model_name
expires_at avatar total_tokens
created_at created_at prompt_tokens
updated_at updated_at completion_tokens
latency
cost
created_at
id
updated_at
name
description
created_at
updated_at

Figura 3.1: Diagrama Entidade-Relacionamento do Sistema

A entidade central desta modelagem é a tabela users, ela é a raiz de integridade
referencial do sistema, armazenando de forma segura as credenciais de acesso e os
dados de perfil. Para garantir a governanga e a segregacao de fungoes, esta entidade
relaciona-se diretamente com a tabela roles, que define a hierarquia de permissoes
baseada em papéis, distinguindo administradores de usuérios comuns. Ainda neste

contexto de seguranca, a entidade reset_password_tokens suporta os fluxos de

3.3 Proposta de Sistema 40

recuperacao de conta, armazenando hashes temporarios para permitir a redefini¢ao

de senhas sem intervencao administrativa.

A modelagem prevé ainda uma separagao clara entre o acesso humano e o acesso
de maquina. Para isso, a entidade auth_access_tokens gerencia as chaves de
integracao geradas pelos usuarios. Diferente de uma sessao de navegador, esses
registros controlam o acesso de aplicacoes externas, permitindo a revogacao granular
de permissoes e garantindo que o trafego de [APIl seja autenticado e rastreavel até

sua origem.

O ntcleo funcional da plataforma reside na interagao entre as entidades de
auditoria e custo. A tabela prompt_requests registra cada interagao processada
pelo sistema, estrutura dados criticos como o tempo de laténcia, a contagem exata
de tokens de entrada e saida, e o contetido das mensagens, viabilizando auditorias
forenses e de qualidade. Para suportar a engenharia de custos associada a esses
registros, o sistema utiliza a entidade language_models como um catélogo dinamico
de parametrizacao. Esta tabela armazena as configuragoes e os precos vigentes de cada
modelo, permitindo que o céalculo financeiro das requisi¢oes na prompt_requests

seja realizado com base em dados atualizaveis.

Capitulo 4

Observator

Este capitulo detalha o processo de construcao e a implementacao técnica da
plataforma de observabilidade de LLMs, conforme a arquitetura e os requisitos
definidos no Capitulo 3. A solucao foi implementada como uma aplicagdo web

completa, focada em modularidade, seguranca e desempenho.

4.1 Tecnologias Utilizadas

A materializacao da arquitetura de referéncia proposta no capitulo anterior exigiu
a selegao criteriosa de uma pilha tecnologica visando garantir a manutenibilidade, a
seguranca de tipos e a escalabilidade. A implementacao fundamentou-se no ecossis-
tema NodelJs, adotando o TypeScript como linguagem unificadora para assegurar a

integridade e robustez do codigo em todas as camadas da aplicacao.

Optou-se por uma abordagem arquitetural de monolito modular, integrando um
back-end estruturado e coeso com uma interface reativa moderna. Esta estratégia
visa reduzir a complexidade operacional, mantendo, contudo, a separacao logica
de responsabilidades. A seguir, sao detalhadas as decisdoes de engenharia e as
ferramentas selecionadas para compor cada subsistema, justificando sua adogao

frente as alternativas de mercado.

4.1 Tecnologias Utilizadas 42

4.1.1 AdonisJS

O ntcleo da aplicacao foi desenvolvido sobre o AdonisJ SEl, um framework web para
Node.js que adota a premissa TypeScript-first. Sua arquitetura adere estritamente
ao padrao Model-View-Controller (MVC), oferecendo uma estrutura de diretérios
opinativa e organizada, além de um ambiente de desenvolvimento integrado com

suporte a Hot Module Replacement (HMRJ) para o codigo de back-end.

A escolha desta tecnologia fundamentou-se em sua filosofia batteries included.
Diferentemente de micro-frameworks como Expressﬂ que exigem a montagem manual
de componentes de terceiros, o AdonisJS fornece nativamente um ecossistema coeso
e robusto. Esta abordagem foi decisiva para acelerar o ciclo de desenvolvimento, pois
prové solugoes integradas e testadas para os desafios centrais da plataforma.Dentre os
componentes nativos que justificam essa escolha arquitetural, destacam-se o Luci(ﬂ
que realiza a modelagem de dados e abstragao Structured Query Language (SQL)),
Bouncer para o controle de autorizacao granular, Auth para um gerenciamento seguro

de autenticagao e Adonis Jobs para o processamento de de filas.

Para a inicializacao da infraestrutura, optou-se pela utilizacao de um starter kitﬁ
desenvolvido por membro da comunidade Adonis, em detrimento do padrao oficial.
A escolha deste artefato especifico justifica-se pela disponibilizagao de configuragoes
arquiteturais avancadas pré-configuradas, estendendo as funcionalidades nativas com
uma camada adicional de abstracao. Essa decisao estratégica eliminou a necessidade
de configuragoes triviais iniciais, permitindo foco imediato nas regras de negdcio do

gateway.

4.1.1.1 Lucid

O framework AdonisJS oferece flexibilidade na integracao com Object-Relational
Mappings ([ORME), esta tecnologia atua como uma camada de abstracao responsavel

por mapear as tabelas de um banco de dados relacional para classes e objetos

Lhttps : //adonisjs.com/

Zhttps : | /expressjs.com/

3https : / /lucid.adonisjs.com/docs/introduction

Ahttps : /| /github.com/ filipebraida/adonisjs — starter — kit

4.1 Tecnologias Utilizadas 43

da aplicagao, eliminando a necessidade de manipulagao direta de instrugoes [SQL]
para operagoes padrao. A arquitetura do framework permite que o desenvolvedor
selecione a biblioteca de sua preferéncia, com a documentagao oficial listando suporte

a alternativas de mercado como PrismaEl e TypeORMﬁ.

Para este projeto, no entanto, optou-se pela utilizagao do Lucid. Esta decisao
justifica-se pelo fato de a biblioteca ja vir pré-configurada na estrutura base do Ado-
nisJS e, crucialmente, por ser desenvolvida pela mesma equipe do framework, o que
minimiza riscos de incompatibilidade e assegura maior estabilidade nas atualizagoes.
O Lucid destaca-se também por abstrair a complexidade das consultas mantendo o

acesso ao potencial do [SQI] oferecendo uma [APIl para abstrair operagoes avancadas.

Para a implementacao desta plataforma, selecionou-se o PostgreSQL como o
Sistema Gerenciador de Banco de Dados ([SGBD)) devido sua robustez, confiabilidade
e, principalmente, em seu suporte avancado a tipos de dados nao-estruturados,

especificamente o tipo JSON Binary (JSONBI)

4.1.1.2 Auth

O gerenciamento de identidade foi implementado através do moédulo nativo
de Autenticagao do AdonisJS. Dada a natureza hibrida da plataforma, que opera
simultaneamente como uma aplicagao web interativa e um gateway, foi necesséario

orquestrar duas estratégias de autenticagao distintas.

e Guard Web: Configurado para proteger a Single-Page Application (SPA), este
guardiao utiliza o mecanismo tradicional de sessoes baseadas em cookies seguros.
Ele é responsavel por manter o estado de login dos administradores e usuarios

nas paginas privadas dos sistema.

e Guard API: Configurado especificamente para proteger os endpoints do gateway
de [[LMl Este guardido utiliza tokens de acesso opacos, permitindo que

aplicacoes externas e [SDKE se autentiquem de forma programética. Esta

Shttps : | Jwww.prisma.io/
Shttps : | /typeorm.io/

4.1 Tecnologias Utilizadas 44

estratégia dissocia a autenticagao da maquina da sessao do usuério, garantindo
que as integragoes nao expirem com o fechamento do navegador e possam ser

revogadas individualmente.

4.1.1.3 Bouncer

O controle de acesso baseado em papéis foi implementado por meio do Bouncer, o
modulo oficial de autorizacao do AdonisJS. Esse modelo de controle define permissoes
com base nos papéis atribuidos aos usuarios, em vez de associar permissoes individu-
almente a cada um. Assim, um usuério herda automaticamente as permissoes do seu
papel, como administrador ou usuario comum, tornando o gerenciamento de acessos

mais seguro, escalavel e consistente.

O Bouncer fornece uma camada robusta para o gerenciamento dessas permissoes,
permitindo a centralizacao das regras de autorizacao em policies, que encapsulam
as decisoes de seguranca sobre quem pode executar determinadas agoes no sistema.
Cada policy define métodos que representam acoes especificas, como visualizar, criar,
atualizar ou remover, e retorna um valor boolean indicando se o usuério tem ou nao

permissao para realizé-las.

4.1.1.4 Adonis Jobs

A interacao com [LLM] caracteriza-se por uma laténcia intrinseca elevada e variavel,
aumentada pela extensao dos prompts e por eventuais congestionamentos de rede.
A execucao sincrona dessas operacoes no fluxo principal da requisicao [HT TPl pode
bloquear o processo do servidor, impedindo o atendimento de novas solicitagoes e
conduzindo ao esgotamento de recursos. Este cenério configura um cléssico pro-
blema do tipo produtor-consumidor, onde a taxa de entrada de requisi¢oes supera a

capacidade imediata de processamento, resultando em degradagao de desempenho.

Para mitigar esses efeitos e gerenciar operacoes de longa duracao a solucao
proposta incorpora um sistema robusto de filas orquestrado pelo pacote Adonis Jobs.

Construido sobre a biblioteca de sistema de filas BullMCﬂ o pacote fornece uma

Thttps : / /bullmq.io/

4.1 Tecnologias Utilizadas 45

integragao limpa e idiomatica dessa tecnologia ao ecossistema AdonisJS, utilizando o

Redif| para armazenamento e gerenciamento das filas.

A adocgao deste mecanismo foi determinante para a resiliéncia e escalabilidade
do gateway. Ao delegar o processamento intensivo a workers dedicados, reduz-se
drasticamente a carga sobre o servidor web principal. A persisténcia e orquestragao
dessas tarefas sao suportadas pelo Redis, que fornece um canal de comunicagao de

baixa laténcia e alta vazao, requisito critico para ambientes de alto volume de trafego.

Em termos de implementagao, o job encapsula toda a légica da tarefa: executa
a chamada ao provedor de [LLM] coleta métricas de telemetria, laténcia, contagem
de tokens e contetiido, e estrutura a resposta. O controlador, por sua vez, atua
apenas como despachante, submetendo a tarefa a fila e aguardando a resolucao do
processamento para retornar a resposta ao cliente. Em cenéarios de erro, o job captura

o contexto da falha, garantindo a rastreabilidade completa da operacao.

Embora o sistema mantenha uma interface sincrona para o cliente, o ganho
em escalabilidade horizontal é significativo. A arquitetura permite que os workers
operem de forma independente, possibilitando a adicao dindmica de novas instancias
de processamento conforme a demanda aumenta. Isso permite distribuir a carga
de trabalho entre miltiplas maquinas, assegurando a absorcao eficiente de picos de

trafego com eficiéncia de recursos.

A robustez operacional é reforcada pelo suporte nativo a politica de retentativa.
Falhas transitorias, como instabilidades de rede ou timeouts do provedor, sao tratadas
automaticamente através do reprocessamento do job. Para evitar a saturagao do
servigo externo em momentos de instabilidade, aplica-se a estratégia de exponential
backoff, que aumenta progressivamente o intervalo entre as tentativas. Isso transforma

o tratamento de erros em um processo controlado e deterministico.

Em sintese, este modelo materializa a solucao para o problema produtor-consumidor:
o servidor [HTTP] atua como produtor agil, enfileirando demandas, enquanto os wor-

kers atuam como consumidores resilientes, processando a carga conforme a capacidade

8https : //redis.io]

4.1 Tecnologias Utilizadas 46

disponivel. Esse desacoplamento arquitetural é o pilar que garante o equilibrio de
carga, a tolerancia a falhas e a manutencao dos niveis de servigo mesmo sob condig¢oes

adversas.

4.1.2 Padrao Arquitetural: AI Gateway

Sobre a fundagao tecnologica do AdonisJS e do sistema de filas, o niicleo da
aplicagao foi desenhado para materializar o padrao arquitetural de AI Gateway.
Conceitualmente, um Al Gateway atua como um ponto tnico de entrada e controle
entre as aplicagoes clientes e os modelos fundacionais, abstraindo a complexidade de
multiplas [APIs e centralizando politicas de trafego e auditoria. A implementacao
deste componente no Observator foi projetada para operar como um middleware
de alta performance, interceptando requisi¢oes para injetar observabilidade sem

adicionar laténcia significativa.

Para garantir a compatibilidade com sistemas legados que ja possuem integracao
via com provedores de [LLMk, o gateway implementa o padrao de projeto
adapter. Para o escopo desta implementacao, o desenvolvimento foi direcionado
especificamente para o suporte a [API] Gemini. Desta forma, a interface exposta
mimetiza estritamente o contrato de dados esperado pelo oficial deste provedor.
Isso permite que a plataforma atue como um componente de substituicao direta: a
aplicacao cliente envia a requisicao formatada para o [LLM], o gateway a intercepta,
processa a auditoria e devolve a resposta no formato exato que o espera,

tornando a camada de observabilidade transparente para o cédigo consumidor.

4.1.3 Arquitetura de Projeto e Front-end

A organizagao do codigo-fonte foi estruturada visando a manutenibilidade a longo
prazo e a escalabilidade modular. Para tal, adotou-se uma estrutura de monorepo,
gerenciada pelo gerenciador de pacotes PNPMH e orquestrada pela ferramenta de build

system Turborepﬂ Esta estratégia permite o controle centralizado de dependéncias,

Ohttps : //pnpm.io/
Ohttps : / [turborepo.com/

4.1 Tecnologias Utilizadas 47

otimizagao do tempo de compilacao através de armazenamento em cache remoto e a
segregacao clara de responsabilidades, a estrutura de diretorios reflete essa divisao

logica.

e apps/web: Abriga a aplicagao principal, contendo a logica de negocio e as

camadas de apresentacao.

e packages/ui: Contém o design system proprietério, isolado como uma biblio-

teca interna de componentes visuais reutilizaveis.

Esta separacao fisica favorece a padronizacao da interface. A aplicagao principal
consome o pacote de User Interface (Ul como uma dependéncia, garantindo que
elementos graficos, estilizados uniformemente via TailwindCSY"| e componentes
base shadcn /ui, mantenham a consisténcia visual e evitem a duplicagao de codigo

Cascading Style Sheets ([CSS)).

A arquitetura da interface é definida pela integracao de trés tecnologias funda-
mentais: (i) ReactEl que ¢ utilizado como biblioteca de renderizacao, permitindo a
construcgao de interfaces reativas complexas, essenciais para os painéis de analytics
e tabelas de dados do sistema. (ii) o Inertiaﬁ atuando como protocolo de ligagao
entre o back-end e o front-end. Ele permite que os controladores do servidor rende-
rizem componentes React diretamente, injetando dados via props. Isso viabiliza a
experiéncia de usuario de uma sem a sobrecarga arquitetural de desenvolver e
manter uma aplicagdo apartada exclusivamente para o front-end. (iii) Vitﬂ que é
empregado como ferramenta de empacotamento. Por utilizar médulos ES nativos
e suportar [HMR] o Vite acelera significativamente o ciclo de desenvolvimento e

feedback visual.

O resultado é uma arquitetura de monolito modular robusta, que combina a
simplicidade de implantacao de uma aplicagao tradicional com a interatividade

moderna de uma [SPAl baseada em componentes.

Uhttps : / /tailwindcss.com/
Lhttps : //react.dev/
Bhttps : / Jinertiajs.com/
Yhttps : / Jvite.dev/

4.2 Implementacao do Observator 48

4.2 Implementagao do Observator

Apos a definigao da arquitetura e das tecnologias, esta se¢ao apresenta a materia-
lizacao da plataforma Observator. A seguir, sao detalhados os principais fluxos de
interacao e as interfaces desenvolvidas, evidenciando como os requisitos funcionais
e as regras de negbcio foram traduzidos em componentes visuais e mecanismos de
controle. A apresentacgao segue a jornada tipica do usuario, desde o provisionamento

de acesso até a andlise avancada de métricas de observabilidade.

4.2.1 Registro, Autenticacao e Recuperacao

A arquitetura do modulo de gestao de identidade foi projetada para harmonizar
requisitos nao funcionais de seguranga e usabilidade, abrangendo os ciclos de registro,
autenticacao e recuperacao de credenciais. Estas funcionalidades formam a barreira de
controle de acesso primaria, assegurando que apenas entidades autorizadas interajam
com os recursos protegidos do sistema, garantindo assim a confidencialidade e a

integridade dos dados.

O processo de registro de contas constitui o ponto de entrada para novos usuérios.
Nesta etapa, o sistema coleta e processa as credenciais essenciais como e-mail e senha,
além do nome de usario. A implementacao da tela de registro incorpora mecanismos
rigorosos de validagao de dados de entrada, aplicando regras de negdcio que asseguram
a unicidade do identificador e a conformidade com politicas de complexidade de

senha. A figura [4.T] exibe o formulario de registro.

4.2 Implementacao do Observator 49

§ Observator

Crie sua conta

Preencha os campos abaixo para criar sua conta

Nome completo

Seu nome completo

Email

m@ufrr.br

Senha

Digite uma senha forte

Confirme sua senha

Repita sua senha

Ja tem uma conta? Entrar

Figura 4.1: Tela de Cadastro de Usuarios

Adicionalmente, visando a eficiéncia operacional, o sistema implementa uma
estratégia de autenticagao implicita pos-registro: apds a persisténcia bem-sucedida
da nova conta, a sessao é estabelecida automaticamente, eliminando a redundancia
de um login subsequente. O tratamento de excegoes é realizado em tempo real
na camada de apresentagao, fornecendo retorno seméantico ao usuario em casos de

violacao das regras de validacao ou conflitos de dados.

A materializagao do mecanismo de controle de acesso é visualizada na Figura
que exibe a tela de login desenvolvida. O layout reflete a estratégia de autenticagao
hibrida adotada na arquitetura, segregando visualmente as credenciais locais do

provedor de autenticagao externo.

Esta disposicao busca otimizar a usabilidade ao oferecer um caminho de menor
resisténcia via autenticagao social, mitigando a fadiga de senhas sem excluir a opcao
tradicional. Apoés a submissao bem-sucedida nesta tela, o back-end estabelece o token

de sessao, garantindo a persisténcia segura do estado de autenticacao.

4.2 Implementacao do Observator 50

& Observator

Acesse sua conta

Digite seu e-mail abaixo para acessar sua conta
E-mail

Digite seu e-mail

Senha
Digite sua senha

Esqueceu sua senha?

Ou continue com
G Entrar com o Google

Ainda n&o tem uma conta? Cadastre-se

Figura 4.2: Tela de Login

Por fim, o ciclo de gestao de credenciais é completado pelo médulo de recuperacao,
projetado para restaurar o acesso em cenarios de perda de senha sem comprometer a
seguranca da conta. A tela de solicitagao, apresentada na Figura [£.3] atua como o

gatilho inicial deste processo.

Arquiteturalmente, o fluxo é desacoplado: a solicitacao do usuério dispara um
evento interno que enfileira o envio de um e-mail transacional de forma assincrona.
Este e-mail contém uma Uniform Resource Locator (URL) assinada com criptografia
que possui tempo de expiracao curto. Esta abordagem garante que apenas o detentor
do e-mail possa acessar a tela de redefinicao dentro de uma janela temporal restrita,

mitigando riscos de ataques de for¢a bruta ou interceptacao de enderecos antigos

4.2 Implementacao do Observator 51

§ Observator

Esqueceu sua senha?

Digite seu e-mail abaixo para
receber o link de recuperagao.

E-mail

usuario@ufirj.br

Lembrou sua senha? Entrar

Figura 4.3: Tela de Recuperagao de Senha

4.2.2 Dashboard

Imediatamente ap6s a autenticagao, o sistema apresenta o dashboard, conforme
demonstrado na Figura[£.4] Esta tela constitui o ponto central de observabilidade,

consolidando métricas criticas de consumo e desempenho em uma visao unificada.

A arquitetura de informacao foi estruturada hierarquicamente para oferecer diag-
nosticos rapidos. O topo da tela destaca indicadores de desempenho que quantificam
o volume transacional total, o custo financeiro acumulado e a laténcia média. Na
camada subsequente, a visualizagao grafica possibilita a analise de tendéncias tem-
porais, como a evolucao de custos diaria e tempo de resposta por requisicao, bem
como a avaliagao da confiabilidade sistémica através da proporcao entre requisigoes

bem-sucedidas e falhas.

Adicionalmente, para o perfil com privilégios administrativos, a tela disponibiliza
mecanismos de filtragem granular, essenciais para isolar as métricas de usuarios

especificos e subsidiar processos de auditoria detalhada.

4.2 Implementacao do Observator 52

§ Observator Dashboard Histérico E3 0
Dashboard
Total de Requisi¢des Custo Total Laténcia Média Taxa de Sucesso
25 $0.053872 2486.333333 ms 96.00%
Custo por Dia (Ultimos 30 dias) Status das Requisigdes
0.03
0.0225
0.015 .
0.0075:
111 12/11 13111 1411 mEror m Success
Laténcia por Requisigao (Ultimas 50)
Laténcia média: 2486.333 ms
- Laténcia Cache - Laténcia LLM
12000
._—a
9000 \ N
@ “ \ /
= 6000 / / 4
/ \ / /
3000 y Y Va e
o ’ —o— s / N - -

Figura 4.4: Tela de Dashboard

4.2.3 Histoérico de Interagoes

Complementando a visao agregada do dashboard, o histérico de interagoes oferece
a capacidade de rastreabilidade granular. A tela, ilustrada na Figura[4.5] implementa
uma visualizagao tabular projetada para a auditoria detalhada de cada interacao

com o gateway.

Cada registro na tabela apresenta os metadados essenciais para a identificagao e
analise da transagao, organizados em dimensoes complementares. O sistema exibe o
contexto e o contetido da operacao, incluindo a data da execucao, o modelo utilizado
e um fragmento do prompt para identificacao visual rdpida. Em termos de telemetria,
sao apresentados o status da operacao, a laténcia da resposta e a contagem de tokens.
Por fim, para a analise de eficiéncia financeira, a tabela detalha o custo exato da
transacao e o indicador de origem, cache ou [APII[LLM] permitindo verificar a eficacia

da estratégia de economia de recursos.

4.2 Implementacao do Observator 53

& Observator Dashboard Historico Administraggo v % AD

Historico

Historico de Interagoes
Visualize todas as suas interagdes com os LLMs.

Data Prompt Status Provedor Modelo Tokens Custo (USD) Cache
24/11/2025 05:40:43 Quem foi Alan Turing? gemini gemini-2.0-flash-001 $0.000000 false
24/11/2025 05:09:59 Explique a diferenga entre javascript e typescript... gemini gemini-2.0-flash-001 195 $0.012579 false
24/11/2025 05:09:51 Qual é a distancia da Terra para Lua? gemini gemini-2.0-flash-001 14 $0.001229 false
24/11/2025 05:09:49 Traduza 'Ol4, como vocé esta? para o japonés. gemini gemini-2.0-flash-001 261 $0.002790 false
24/11/2025 05:09:46 Quais s30 os principais ingredientes de uma pizza ... gemini gemini-2.0-flash-001 188 $0.002009 false
24/11/2025 05:09:44 Quem ganhou a copa do mundo em 20182 gemini gemini-2.0-flash-001 28 $0.000340 false
24/11/2025 05:09:43 Explique o conceito de metaprogramgao. gemini gemini-2.0-flash-001 1198 $0.012611 false
09/11/2025 21:22:06 qual a capital da russia? gemini gemini-2.0-flash-001 16 $0.000000 true
09/11/2025 21:20:08 qual a capital da russia? gemini gemini-2.0-flash-001 16 $0.000189 false
09/11/2025 21:07:29 Qual & a capital da india ? gemini gemini-2.0-flash-001 17 $0.000203 true
Rows perpage 10 v Page 10f7 « <> »

Figura 4.5: Tela de Histoérico de Interagoes

4.2.4 Detalhes da Interagao

A partir da tabela de histérico, o usuario pode navegar a até a tela de detalhes
da interacao. Esta tela foi projetada para oferecer uma visao completa e granular do

ciclo de vida da interagao entre o sistema e o modelo de linguagem.

O componente central desta tela é o visualizador de dados estruturados, que
apresenta os objetos completos de request e response. Este formato permite que
usuarios inspecionem cada campo da interacao, incluindo parametros de configuracao,
cabecalhos de seguranca, tempo de execugao e metadados técnicos retornados pelo

provedor.

Adicionalmente, a tela processa o[JSON|bruto para apresentar uma secao dedicada
ao contetido da resposta, onde o texto principal produzido pelo [LLMI| é extraido e
renderizado de forma legivel. Esta funcionalidade é critica para a validacao seméntica,

facilitando a leitura humana sem a poluicao visual da sintaxe LISON|

A relevancia desta funcionalidade no contexto de observabilidade reside em seu
papel como ferramenta de depuracao e analise forense. Ao expor integralmente o

fluxo de comunicagao, conforme ilustrado na Figura [1.6] o sistema permite investigar

4.2 Implementacao do Observator 54

a raiz de falhas, comparar comportamentos entre diferentes modelos e auditar o

conteudo exato trafegado.

§ Observator Dashboard Historico Administraggo v % AD

Historico > Requisigao: #100

Detalhes da Interacao #100

Visualize os detalhes de uma interagdo especifica.

Requisigdo Resposta

Contetdo da Resposta

{

“prompt”: "Quem ganhou a copa do mundo em 20182" AFranga ganhou a Copa do Mundo de 2018.
Objeto JSON Completo

{

“candidates": [

- >

“content": {
"role": "model”,
"parts”: [
{
“"text": "A Franca ganhou a Copa do Mundo de 2018.\n"
}
1

Figura 4.6: Tela de Detalhamento de Interagao

4.2.5 Painel de Governanga de Usuéarios

Restrito ao perfil de administrador, o médulo de gerenciamento de usuarios
implementa os requisitos de controle centralizado sobre o ciclo de vida das identidades.
A tela principal, apresentada na Figura organiza a base de usuarios em uma

estrutura tabular, expondo metadados criticos como nome, e-mail e nivel de privilégio.

Além da opcao de listagem de usuérios, o sistema integra a este painel o mecanismo
de registro centralizado, detalhado na Figura [1.8] Esta funcionalidade permite o
registro completo de novos usuarios, incluindo nome, e-mail, senha e defini¢ao
imediata do papel sem a necessidade de cadastro manual pelo préprio utilizador.
Esse processo é estratégico para ambientes corporativos, assegurando que a gestao
de acessos permaneca centralizada e que nenhuma credencial seja gerada sem a

supervisao explicita da administragao.

4.2 Implementagao do Observator 55

& Observator Dashboard Historico Administragéo v % AD
Usuarios
Usuarios) ”
Gerencie os usudrios da sua aplicagao Comvidar &2

Pesquisar... @ Papel

Nome completo E-mail Papel

Administrador admin@repo.com O Admin

Lucas Santoro lucas.santoro@ufr.br 8 User

Pedro Rocha pedro.rocha@ufrrj.br o User

Jéssica Souza jessica.souza@ufrrj.br & User

Moisés Godinho moises.godinho@ufrr.br 8 User

José Marroquim jose.marroquim@ufrr.br 8 User

Rows perpage 10 Page 10f 1 « < > »

Figura 4.7: Tela do Painel Administrativo

Criar Usuario

Preencha os dados abaixo para adicionar um novo usuario.
Clique em adicionar quando terminar.

Nome Completo

Digite 0 nome completo do usuario

E-mail

Digite 0 e-mail do usuario

Fungdo

o User v
Senha

ex.: S3gur@nc@123
Confirmar Senha

ex.: S3gur@nc@123 et

Figura 4.8: Tela de Registro Centralizado de Contas

A governanca é complementada pela tela de edicao, que materializa na pratica o
modelo RBAC] Conforme ilustrado na Figura [£.9] o administrador tem a capacidade

de modificar os atributos de identidade e o nivel de privilégio atribuido ao usuério.

Esta funcionalidade confere dinamismo a gestao de seguranga, permitindo o ajuste
de acessos em resposta a mudangas organizacionais. O sistema viabiliza tanto a
elevacao de privilégios quanto a restricao de acesso, assegurando que as permissoes

permanecam sempre alinhadas as responsabilidades atuais de cada colaborador.

4.2 Implementagao do Observator 56

Editar Usudrio *

Atualize os dados do usuario abaixo. Clique em salvar qguando
terminar.

Nome Completo
Lucas Santoro
E-mail

lucas.santoro@ufrj.br

Fungo

o User v

Senha
ex.: S3gur@nc@123

Confirmar Senha
ex.: S3gur@nc@123 e

Figura 4.9: Tela de Edi¢ao de Usuério

4.2.6 Gestao de Conta e Configuragoes

O modulo de configuragoes foi projetado sob uma arquitetura de navegacao
unificada , compartilhando um layout lateral persistente. Esta decisao de design visa
centralizar as funcionalidades de personalizacao, seguranca e integragao, garantindo
uma experiéncia coesa e reduzindo a carga cognitiva necessaria para alternar entre

contextos de gestao da conta.

4.2.6.1 Perfil e Identidade Visual

A tela de configuragoes de perfil, apresentada na Figura permite a gestao
dos dados cadastrais e da identidade visual do usuario. A implementagao foca na
autonomia, permitindo a atualizagao dinamica de atributos como nome de exibigao
e avatar. Essas informagoes sao persistidas no banco de dados e propagadas para
o cabecalho da aplicacao e para os logs de auditoria, garantindo consisténcia na

identificagdo do usuario em todo o sistema.

4.2 Implementacao do Observator 57

& Observator Dashboard Historico Administragéo v % AD

Configuragdes

Configuracoes
Gerencie seu perfil e as configuragdes da sua conta.

Perfil Informagdes do perfil
Atualize seu nome e enderego de e-mail

Jo

£ Password
=

Tokens Change avatar
AD

JPG, GIF or PNG. 1MB max.

Full Name

Administrador

Email
admin@repo.com

Figura 4.10: Tela de Configuracao de Perfil

4.2.6.2 Sequranc¢a e Credenciais

A secao de seguranca implementa os controles de redefinicao de credenciais.
Conforme ilustrado na Figura o formulario impode regras estritas de validagao:
a exigéncia da senha atual para autorizar a mudanca e a aplicacao de politicas de
complexidade para a nova senha. Esta funcionalidade é vital para a manutengao da

higiene de seguranca da conta.

& Observator Dashboard Historico Administragéo v % AD

Configuragdes

Configuracoes
Gerencie seu perfil e as configuragdes da sua conta.

Perfil Atualizar senha
Garanta que sua conta esteja usando uma senha longa e aleatoria para manter-se segura

Jo

Password
2 Password
=

Tokens e.g., S3cur3P@ssword W

Confirm Password

e.g., S3cUr3P@ssworc

Figura 4.11: Tela de Alteracao de Senha

4.2 Implementacao do Observator 58

4.2.6.3 Gestao de Tokens

Por fim, a area de tokens de [APIl representa o ponto de convergéncia entre a
tela humana e a automacao. Esta tela, exibida na Figura [4.12 instrumentaliza o
requisito de soberania de acesso, permitindo que o usuério gerencie o ciclo de vida
de suas chaves de acesso programatico. Essa interface disponibiliza uma listagem

de tokens ativos e agoes para a geracao de novas chaves e a revogacao imediata de

credenciais.
& Observator Dashboard Historico Administragéo v % AD
Configuragdes
Configuracoes
Gerencie seu perfil e as configuragdes da sua conta.
o Perfi Tokens
Gerencie aqui seus tokens de API
£ Password
&8 Tokens

Name Created At Last Used At

ChatBot-Token 2025-11-24T03:39:19.673Z

Rows perpage 10 - Page 10f 1

Figura 4.12: Tela do Gerenciamento de Tokens de Acesso a API

E através do token gerado nesta tela que desenvolvedores e sistemas externos
realizam a autenticacao junto ao gateway. Para consumir os recursos de um provedor
[LLMI juntamente com o Observator, a aplicacao cliente deve incorporar este segredo
ao cabecalho [HTTP] padrao de autorizacao, conforme demonstrado no exemplo de

requisicao abaixo:

Codigo 4.1: Exemplo de Integracao via SDK Google

1 import { GoogleGenAI } from ’Q@google/genai’

3 const genAl = new GoogleGenAI ({
4 apiKey: ‘${process.env.GOOGLE_API_KEY}*,

5 httpOptions: {

4.2 Implementacao do Observator 59

6 baseUrl: ‘${process.env.0BSERVATOR_APP_URLZ}‘,

~

headers: {

8 >Authorization’: ‘Bearer ${authTokenGatewayl*,

9 ’x-api-key’: ‘${process.env.GOOGLE_API_KEY}‘,

10 >targetURL’: ’https://generativelanguage.googleapis.com’,
11 },

12 1,

13 });

15 async function generateContent () {

16 const response = await genAI.models.generateContent ({
17 model: "gemini-2.0-flash-001",

18 contents: "Por que o céu é& azul?",

19)

22 generateContent () ;

Capitulo 5

Conclusao

O presente trabalho abordou os desafios emergentes na engenharia de software
voltada para Inteligéncia Artificial, especificamente no contexto da operacionalizacao
de [[LMk. Partindo da premissa de que a integracao direta com provedores de [LLMk
introduz riscos de imprevisibilidade de custos e dependéncia tecnoldgica, a pesquisa

culminou no desenvolvimento e valida¢cao de uma plataforma de observabilidade.

Este capitulo final sintetiza os resultados alcancados, reflete sobre as implicacoes
arquiteturais da solucao proposta e delineia as fronteiras do escopo atual, apontando

caminhos para a evolugao continua do projeto.

5.1 Consideragoes Finais

A materializacao da plataforma Observator demonstrou que a adogao de um
padrao arquitetural de gateway é uma estratégia eficaz para retomar o controle
sobre aplicacoes baseadas em [LLMk. Ao interpor uma camada de infraestrutura
controlada entre o cliente e o provedor, foi possivel transformar um processo de
“caixa-preta” em um fluxo transparente e auditavel, sem impor complexidade excessiva

ao desenvolvimento.

Do ponto de vista técnico, a implementacao validou a robustez da pilha tecnolégica

escolhida. O uso do ecossistema Node.js com TypeScript e AdonisJS provou-se

5.2 Limitacoes e Trabalhos Futuros 61

adequado para lidar com operacoes de input e output intensivo, enquanto a arquitetura
de processamento baseada em filas garantiu a resiliéncia necesséaria para mitigar
a instabilidade inerente as [APIs de [LLMk. A estratégia de substituicao direta,
mimetizando o contrato de interface do oficial, confirmou-se como um diferencial

de usabilidade, reduzindo drasticamente o atrito de integracao.

Em termos de negbcio e governanca, o sistema atingiu os objetivos de soberania
de dados e controle financeiro. A capacidade de persistir prompts e respostas
em infraestrutura propria, aliada ao calculo preciso de custos por transagao e ao
mecanismo de cache, oferece uma alternativa viavel e econémica frente as solugoes
SaaS proprietarias de mercado, que muitas vezes exigem o envio de dados sensiveis

para terceiros.

Conclui-se, portanto, que a observabilidade nao é apenas uma funcionalidade
acessoria, mas um requisito nao funcional critico para qualquer sistema que possua
alguma integracao com em producao. A solugdo apresentada oferece uma
fundagao basica para equipes que buscam equilibrar inovagao com responsabilidade

operacional.

5.2 Limitacgoes e Trabalhos Futuros

O desenvolvimento de uma plataforma de engenharia de software é um processo
iterativo e continuo. A validade desta pesquisa reside nao apenas nos resultados
alcangados, mas também na delimitacao clara de suas fronteiras experimentais.
Esta secao analisa as restrigoes de escopo assumidas durante a implementagao do
protétipo e projeta um roteiro estratégico para a evolucao da plataforma, visando

sua maturacao para ambientes produtivos de larga escala.

5.2.1 Limitagoes Atuais

Embora a solu¢ao proposta tenha atingido seus objetivos fundamentais, o escopo
deste trabalho apresenta limitacoes inerentes ao tempo e aos recursos de um projeto

académico. Primeiramente, a implementacao atual restringe-se exclusivamente a

5.2 Limitacoes e Trabalhos Futuros 62

integracao com o a[API Gemini. Embora a arquitetura tenha sido concebida para ser
extensivel, o sistema ainda nao suporta nativamente outros provedores com presenga
significativa no mercado, como OpenAIEl ou AnthropicEI, limitando sua aplicagao

imediata em ambientes de miltiplos modelo.

Do ponto de vista da experiéncia em tempo real, o gateway opera atualmente
apenas no modo de resposta completa, nao suportando o retorno de dados via
streaming ou [RAGL Essa restrigao, decorrente da complexidade de manter conexoes
persistentes e gerenciar o fluxo continuo de dados através da camada de processamento
intermediaria, pode impactar a percepcao de laténcia em interfaces de chat que

exigem interatividade imediata.

Além disso, o sistema carece de mecanismos avancados de controle de consumo,
como a gestao automatizada de or¢camentos, que permitiria bloquear o uso de uma
chave de [AP]] apos atingir um teto financeiro mensal, nao foi contemplada nesta
versao. Por fim, o mecanismo de cache implementado baseia-se na correspondéncia
exata do texto, nao possuindo capacidades de busca vetorial para realizar cache
semantico, o que reduz a eficiéncia em cenarios onde perguntas distintas possuem a

mesma intencao semantica.

5.2.2 Trabalhos Futuros

Como roteiro para a evolucao da plataforma, a prioridade reside na expansao da
arquitetura para um modelo agnostico e multi-provedor. A generalizacao do padrao
adapter é fundamental para suportar a normalizacao de requisigoes e respostas de
outros ecossistemas lideres, como OpenAl e Anthropic. Essa evolugao permitiria
que as aplicagoes clientes alternassem entre diferentes modelos de linguagem dinami-
camente, sem a necessidade de refatoracao de cédigo, concretizando a visao de um

gateway universal.

Em paralelo, busca-se elevar a eficiéncia e a inteligéncia do sistema através da

integracao de bancos de dados vetoriais. A implementacao de cache semdntico,

Lhttps : //openai.com/
2https : | Jwww.anthropic.com/

5.2 Limitacoes e Trabalhos Futuros 63

suportada pelo armazenamento de embeddings dos prompts, permitiria reutilizar
respostas baseadas na similaridade de intengao e nao apenas na correspondéncia
textual exata. Adicionalmente, propoe-se a criagao de um modulo de avaliagao
automatizada LLM-as-a-Judge, onde um modelo auxiliar auditaria a qualidade,
toxicidade e relevancia das respostas geradas em um pipeline de pds-processamento,

automatizando a garantia de qualidade.

Por fim, para consolidar a governanga operacional, sugere-se o desenvolvimento de
um sistema de alertas em tempo real. A implementacao de canais de notificagdo como
webhooks ou e-mail que disparem alertas imediatos quando limites orcamentarios ou
taxas de erro criticas forem atingidos transformaria a plataforma de uma ferramenta

passiva de analise historica em um mecanismo ativo de controle e resposta a incidentes.

Referéncias

BENDER, E. M. et al. On the dangers of stochastic parrots: Can language
models be too big? . In: Proceedings of the 2021 ACM Conference on Fuairness,
Accountability, and Transparency. New York, NY, USA: Association for Computing
Machinery, 2021. (FAccT 21), p. 610-623. ISBN 9781450383097. Disponivel em:
<https://doi.org/10.1145/3442188.3445922 >

BOMMASANI, R. et al. On the opportunities and risks of foundation models.
CoRR, abs/2108.07258, 2021. Disponivel em: <https://arxiv.org/abs/2108.07258>.

BROWN, T. et al. Language models are few-shot learners. Advances in neural
information processing systems, v. 33, p. 1877-1901, 2020.

CHANG, Y. et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, ACM, v. 15, n. 3, 2023.

CHOUDHARY, V. Software as a service: Implications for investment in software
development. In: TEEE. 2007 40th Annual Hawaii International Conference on
System Sciences (HICSS’07). [S.1.], 2007. p. 209a—209a.

DAVIS, M. The universal computer: The road from Leibniz to Turing. [S.1.]: AK
Peters/CRC Press, 2018.

DIAZ-DE-ARCAYA, J. et al. Large language model operations (llmops): Definition,
challenges, and lifecycle management. In: 2024 9th International Conference on
Smart and Sustainable Technologies (SpliTech). [S.1.: s.n.|, 2024. p. 1-4.

FERRUCCI, D. et al. Building watson: An overview of the deepqa
project. AI Magazine, v. 31, n. 3, p. 59-79, Jul. 2010. Disponivel em:
< https://ojs.aaal.org/aimagazine/index.php/aimagazine/article/view /2303 >

GAO, Y. et al. Retrieval-Augmented Generation for Large Language Models: A
Survey. 2024. Disponivel em: |<https://arxiv.org/abs/2312.10997 >

GOEL, K. et al. Niyama : Breaking the Silos of LLM Inference Serving. 2025.
Disponivel em: <https://arxiv.org/abs/2503.22562>.

GRESHAKE, K. et al. Not what you’ve signed up for: Compromising real-world
llm-integrated applications with indirect prompt injection. In: Proceedings of
the 16th ACM Workshop on Artificial Intelligence and Security. New York, NY,
USA: Association for Computing Machinery, 2023. (AlISec ’23), p. 79-90. ISBN
9798400702600. Disponivel em: <https://doi.org/10.1145/3605764.3623985 .

https://doi.org/10.1145/3442188.3445922
https://arxiv.org/abs/2108.07258
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2303
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2503.22562
https://doi.org/10.1145/3605764.3623985

REFERENCIAS 65

HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural
computation, MIT press, v. 9, n. 8, p. 1735-1780, 1997.

HUYEN, C. Designing Machine Learning Systems: An Iterative Process for
Production-Ready Applications. Sebastopol: O'Reilly Media, 2022.

JI, Z. et al. Survey of hallucination in natural language generation. ACM Computing
Surveys, v. 55, n. 12, 2023.

JURAFSKY, D.; MARTIN, J. H. Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics, and Speech Recognition,
with Language Models. 3rd. ed. [s.n.|, 2025. Online manuscript released August 24,
2025. Disponivel em: <https://web.stanford.edu/~jurafsky/slp3/>.

KALMAN, R. E. On the general theory of control systems. In: Proceedings of the
First International Congress on Automatic Control. Moscou: Butterworths, 1960.
v. 1, p. 481-492.

LEWIS, M. et al. Bart: Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. In: Proceedings of the 58th
annual meeting of the association for computational linguistics. [S.1.: s.n.|, 2020. p.

7871-7880.

LIANG, P. et al. Holistic evaluation of language models. arXiv preprint
arXw:2211.09110, 2022.

LIAO, Q. V.; VAUGHAN, J. W. Al Transparency in the Age of LLMs:
A Human-Centered Research Roadmap. 2023. Disponivel em: |<https:
/ Jarxiv.org/abs/2306.01941 >

LIU, E.; NEUBIG, G.; ANDREAS, J. An Incomplete Loop: Instruction Inference,
Instruction Following, and In-context Learning in Language Models. 2024. Disponivel
em: <https://arxiv.org/abs/2404.03028 >

LIU, N. F. et al. Lost in the Middle: How Language Models Use Long Contexts.
2023. Disponivel em: <https://arxiv.org/abs/2307.03172>.

LIU, P. et al. Pre-train, prompt, and predict: A systematic survey of prompting
methods in natural language processing. ACM computing surveys, ACM New York,
NY, v. 55, n. 9, p. 1-35, 2023.

MASLEJ, N. et al. Artificial Intelligence Index Report 2023. 2023. Disponivel em:
<https://arxiv.org/abs/2310.03715>

MIKOLOV, T. et al. Efficient estimation of word representations in vector space.
arXw preprint arXiw:1301.3781, 2013.

PENNINGTON, J.; SOCHER, R.; MANNING, C. D. Glove: Global vectors for
word representation. In: Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP). [S.1.: s.n.|, 2014. p. 1532-1543.

https://web.stanford.edu/~jurafsky/slp3/
https://arxiv.org/abs/2306.01941
https://arxiv.org/abs/2306.01941
https://arxiv.org/abs/2404.03028
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2310.03715

REFERENCIAS 66

RADFORD, A. et al. Improving language understanding by generative pre-training.
San Francisco, CA, USA, 2018.

RADFORD, A. et al. Language models are unsupervised multitask learners. OpenAl
blog, v. 1, n. 8, p. 9, 2019.

RAFFEL, C. et al. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, v. 21, n. 140, p. 1-67,
2020.

RIO-CHANONA, R. M. del; LAURENTSYEVA, N.; WACHS, J. Large
language models reduce public knowledge sharing on online q&a platforms.
PNAS Nezus, v. 3, n. 9, p. pgae400, 09 2024. ISSN 2752-6542. Disponivel em:
<https://doi.org/10.1093 /pnasnexus/pgaed00=>.

SENNRICH, R.; HADDOW, B.; BIRCH, A. Neural machine translation of rare
words with subword units. In: Proceedings of the 54th annual meeting of the

association for computational linguistics (volume 1: long papers). [S.1.: sn.|, 2016. p.
1715-1725.

SILVER, D. et al. Mastering the game of go with deep neural networks
and tree search. Nature, v. 529, p. 484-503, 2016. Disponivel em: <http:
/ /www.nature.com/nature/journal/v529/n7587 /full /nature16961.html>.

SOMMERVILLE, 1. Software engineering 9th edition. ISBN-10, v. 137035152, p. 18,
2011.

SRIDHARAN, C. Distributed Systems Observability. Sebastopol: O’Reilly Media,
2018.

STRUBELL, E.; GANESH, A.; MCCALLUM, A. Energy and policy considerations
for deep learning in nlp. In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Florence: Association for Computational
Linguistics, 2019. p. 3645-3650.

SUN, G. et al. Coln: Counting the Invisible Reasoning Tokens in Commercial
Opaque LLM APIs. 2025. Disponivel em: |<https://arxiv.org/abs/2505.13778 >

VASWANI, A. et al. Attention is all you need. Advances in neural information
processing systems, v. 30, 2017.

VELASCO, A. A.; TSIRTSIS, S.; GOMEZ-RODRIGUEZ, M. Auditing
Pay-Per-Token in Large Language Models. 2025. Disponivel em: <https:
/ Jarxiv.org/abs/2510.05181>.

WEI, J. et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, v. 35, p. 24824-24837, 2022.

X1, Z. et al. The Rise and Potential of Large Language Model Based Agents: A
Survey. 2023. Disponivel em: |<https://arxiv.org/abs/2309.07864 >

https://doi.org/10.1093/pnasnexus/pgae400
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://arxiv.org/abs/2505.13778
https://arxiv.org/abs/2510.05181
https://arxiv.org/abs/2510.05181
https://arxiv.org/abs/2309.07864

REFERENCIAS 67

XIAO, C.; YANG, Z. Streaming, fast and slow: Cognitive load-aware streaming for
efficient llm serving. In: Proceedings of the 38th Annual ACM Symposium on User
Interface Software and Technology. ACM, 2025. (UIST ’25), p. 1-13. Disponivel em:
<http://dx.doi.org/10.1145/3746059.3747721 >

YAOQO, S. et al. React: Synergizing reasoning and acting in language models. arXiv
preprint arXiw:2210.03629, 2022.

ZHOU, Y. et al. Large Language Models Are Human-Level Prompt Engineers. 2023.
Disponivel em: <https://arxiv.org/abs/2211.01910>>

http://dx.doi.org/10.1145/3746059.3747721
https://arxiv.org/abs/2211.01910

	4d9c1bf82ff0681e6af151fc956612f14d972f25bf44bb1085f7163c52b29a7c.pdf
	4d9c1bf82ff0681e6af151fc956612f14d972f25bf44bb1085f7163c52b29a7c.pdf
	4d9c1bf82ff0681e6af151fc956612f14d972f25bf44bb1085f7163c52b29a7c.pdf
	Agradecimentos
	Resumo
	Abstract
	Lista de Figuras
	Lista de Tabelas
	Lista de Abreviaturas e Siglas
	Introdução
	Fundamentação
	Large Language Model
	Das Abordagens Estatísticas à Arquitetura Transformer

	Arquiteturas de Acesso a LLM
	SaaS
	Interação Humano-Modelo
	Interação Sistema-Modelo

	Fluxos de Geração
	Geração Síncrona
	 Geração por Streaming
	Embeddings
	 RAG

	Engenharia de Prompt e Observabilidade de LLM
	Engenharia de Prompt
	Observabilidade de LLM
	Observabilidade de Custo
	Observabilidade de Qualidade
	Observabilidade de Latência

	Proposta
	Motivação
	Trabalhos Relacionados
	LangSmith
	Langfuse
	Helicone
	 Phoenix
	Síntese Comparativa

	Proposta de Sistema
	Módulos do Sistema
	Autenticação e Autorização
	Gateway de LLM
	Auditoria e Engenharia de Custos
	Dashboard

	 Requisitos Funcionais
	Regras de Negócio
	Casos de Uso
	Modelagem de Dados

	Observator
	Tecnologias Utilizadas
	AdonisJS
	Lucid
	Auth
	Bouncer
	Adonis Jobs

	Padrão Arquitetural: AI Gateway
	Arquitetura de Projeto e Front-end

	Implementação do Observator
	Registro, Autenticação e Recuperação
	Dashboard
	Histórico de Interações
	Detalhes da Interação
	Painel de Governança de Usuários
	Gestão de Conta e Configurações
	Perfil e Identidade Visual
	Segurança e Credenciais
	Gestão de Tokens

	Conclusão
	Considerações Finais
	Limitações e Trabalhos Futuros
	Limitações Atuais
	Trabalhos Futuros

	Referências

