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RESUMO

Observator: Um Gateway para Observabilidade de LLM

Victor Rezende de Lima

Dezembro/2025

Orientador: Filipe Braida do Carmo, D.Sc.

A inteligência artificial generativa consolidou-se como um componente fundamen-

tal no desenvolvimento de software moderno, impulsionando uma rápida integração

de capacidades cognitivas em aplicações comerciais através de Application Program-

ming Interfaces (APIs). No entanto, essa dependência de modelos externos criou

um novo paradigma operacional, onde o núcleo de inteligência das aplicações reside

fora da infraestrutura controlada pelas organizações. Esse cenário resulta em um

problema crítico de pouca visibilidade e falta de governança, caracterizado pela

imprevisibilidade de custos gerados a partir do consumo de tokens, riscos de pri-

vacidade no tráfego de dados sensíveis e dificuldade de auditoria. Com o objetivo

de mitigar esses riscos e retomar o controle infraestrutural, este trabalho propõe e

implementa o Observator, um gateway de observabilidade de código aberto projetado

para orquestrar, auditar e gerenciar as interações entre clientes e provedores de Large

Language Model (LLM). A solução validou a eficácia do padrão arquitetural de AI

Gateway com o padrão de projeto adapter, demonstrando-se uma alternativa viável

às plataformas Software as a Service (SaaS) proprietárias existentes no mercado,

ao oferecer soberania total dos dados e baixo atrito de integração sem os custos de

licenciamento ou os riscos de privacidade inerentes a ecossistemas fechados.
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ABSTRACT

Observator: Um Gateway para Observabilidade de LLM

Victor Rezende de Lima

Dezembro/2025

Advisor: Filipe Braida do Carmo, D.Sc.

Generative artificial intelligence has established itself as a fundamental component

in modern software development, driving the rapid integration of cognitive capabilities

into commercial applications via APIs. However, this reliance on external models

has created a new operational paradigm where the application’s intelligence core

resides outside the infrastructure controlled by organizations. This scenario results

in a critical problem of low visibility and lack of governance, characterized by the

unpredictability of costs generated from token consumption, privacy risks in sensitive

data traffic, and auditing difficulties. Aiming to mitigate these risks and regain

infrastructural control, this work proposes and implements Observator, an open-

source observability gateway designed to orchestrate, audit, and manage interactions

between clients and LLM providers. The solution validated the effectiveness of the

AI Gateway architectural pattern combined with the adapter design pattern, proving

to be a viable alternative to the proprietary SaaS platforms existing in the market by

offering full data sovereignty and low integration friction without the licensing costs

or privacy risks inherent to closed ecosystems.
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Capítulo 1

Introdução

A última década marcou uma transformação singular na indústria de tecnologia,

impulsionada pela consolidação da Inteligência Artificial (IA) como eixo central da

inovação. O surgimento e a rápida evolução dos LLMs, aliados à popularização

da IA generativa, catalisada pelo lançamento de plataformas como o ChatGPT1

superaram barreiras técnicas historicamente desafiadoras. Esses avanços permitiram

que sistemas computacionais passassem a processar, interpretar e gerar linguagem

natural com níveis inéditos de fluência, robustez e eficiência (MASLEJ et al., 2023) .

A disponibilização desses modelos por meio de APIs ou fazendo uso de plataformas

SaaS democratizou o acesso a essa tecnologia, intensificando a corrida pela integração

de capacidades cognitivas em softwares comerciais.

No entanto, a integração com LLMs introduziu um impacto operacional significa-

tiva, ao consumir esses modelos como serviços em nuvem, as equipes de engenharia

passaram a operar com visibilidade limitada sobre os custos gerados por essa integra-

ção (DIAZ-DE-ARCAYA et al., 2024). Os provedores de LLMs não disponibilizam

informações detalhadas sobre as interações com softwares, o que acrescenta novos

riscos à engenharia de software, como a imprevisibilidade orçamentária decorrente

da cobrança por tokens, a dificuldade em diagnosticar falhas semânticas e a ausência

de governança sobre os dados enviados (LIAO; VAUGHAN, 2023). Além disso,

ferramentas tradicionais de monitoramento, projetadas para sistemas determinísticos,
1https : //chatgpt.com
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mostram-se insuficientes para lidar com a natureza probabilística e financeiramente

sensível dessas novas operações (DIAZ-DE-ARCAYA et al., 2024).

Diante desse cenário, torna-se imperativo o desenvolvimento de mecanismos que

devolvam às equipes de engenharia o controle sobre sua infraestrutura de inteligência.

As soluções existentes no mercado frequentemente impõem dilemas entre simplicidade

e soberania, exigindo ou o envio de dados sensíveis para plataformas proprietárias ou

a configuração de infraestruturas complexas e onerosas. Há, portanto, uma lacuna

para ferramentas que ofereçam transparência operacional sem sacrificar a privacidade

dos dados ou a agilidade do desenvolvimento.

Nesse contexto, este trabalho propõe o projeto e a implementação do Observator,

uma plataforma de observabilidade e governança baseada em arquitetura de gateway.

O objetivo central é construir uma solução de código aberto capaz de interceptar,

auditar e gerenciar as interações entre aplicações clientes e provedores de LLM. A

proposta busca viabilizar a integração transparente com aplicações existentes por

meio da compatibilidade com Software Development Kit (SDK)s oficiais, minimizando

o atrito de adoção.

O presente trabalho está organizado em cinco capítulos. O Capítulo 2 apresenta

a fundamentação teórica sobre LLMs, iniciando pela definição conceitual desses

modelos, passando pelas formas de acesso e consumo, e culminando na discussão

sobre engenharia de observabilidade aplicada a LLMs. O Capítulo 3 discute a

motivação, analisa os trabalhos relacionados e apresenta a proposta de solução. O

Capítulo 4 descreve as tecnologias utilizadas e detalha o processo de implementação

da plataforma. Por fim, o Capítulo 5 apresenta as considerações finais, destacando

as limitações do trabalho e sugerindo direções para investigações futuras.



Capítulo 2

Fundamentação

Os avanços recentes em LLMs redefiniram o campo do Processamento de Lingua-

gem Natural (PLN), estabelecendo novos paradigmas de desempenho, generalização

e aplicabilidade (BOMMASANI et al., 2021). Esses modelos, conhecidos como LLMs,

incorporam arquiteturas de aprendizado profundo capazes de analisar e gerar texto

com elevado grau de coerência contextual, fluidez linguística e adaptação a múltiplas

tarefas (ZHOU et al., 2023).

Entretanto, a compreensão dos LLMs exige mais do que a observação de seu

comportamento atual, implicando em revisitar a trajetória histórica que levou à

construção de arquiteturas cada vez mais expressivas e eficientes, passando dos

modelos estatísticos tradicionais aos mecanismos que fundamentam a era da arquite-

tura transformer (JURAFSKY; MARTIN, 2025). Além disso, compreender como

esses sistemas são disponibilizados ao público, seja por meio de interfaces diretas

ou por integrações via API, permite contextualizar suas limitações, capacidades e

implicações para o desenvolvimento de soluções baseadas em IA.

Assim, este capítulo tem como objetivo oferecer uma visão abrangente da evolução

conceitual e arquitetural que culminou nos LLMs, bem como dos modos de acesso e

operação desses sistemas. Tal panorama estabelece as bases necessárias para discutir,

nos capítulos subsequentes, os desafios práticos enfrentados no uso profissional dessas

tecnologias.
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2.1 Large Language Model

Antes de delimitar a especificidade dos grandes modelos, é necessário definir o

conceito de Language Model (LM). Em sua essência, um Language Model é um

sistema probabilístico treinado para determinar a verossimilhança de sequências de

palavras. O objetivo primordial desses modelos é prever o próximo elemento de uma

sentença com base no histórico do texto, capturando as regularidades estatísticas,

gramaticais e semânticas da língua alvo (JURAFSKY; MARTIN, 2025).

Os LLMs constituem uma evolução dessa premissa, configurando-se como sistemas

avançados de PLN fundamentados na tarefa de geração condicional, na qual o

modelo mapeia contextos complexos para respostas textuais coerentes. Segundo

Jurafsky e Martin (2025), LLMs tratam-se de modelos probabilísticos treinados em

vastos volumes de dados para aprender a distribuição estatística da linguagem. A

operacionalização desses sistemas ocorre através da predição iterativa de tokens, que

são as unidades atômicas discretas que compõem o vocabulário do modelo, cuja

probabilidade de ocorrência é calculada condicionalmente a partir de uma instrução

ou contexto de entrada fornecido pelo usuário, tecnicamente denominado prompt.

Enquanto para Bommasani et al. (2021), estes sistemas enquadram-se na definição

de modelos fundacionais, e que podem ser definidos como modelos treinados em

escala massiva sobre dados abrangentes e que podem ser adaptados para uma vasta

gama de tarefas subsequentes. Essa característica permite que uma única arquitetura

generalize o aprendizado para funções distintas, como tradução, sumarização e

geração de código, eliminando a necessidade de desenvolver modelos especializados

do zero para cada aplicação

Porém, o alcance desse patamar de generalização e escala reflete uma evolução

não linear, impulsionada pela necessidade de superar restrições computacionais e

dificuldades na modelagem de contexto. Para dimensionar a transformação radical

representada pelos modelos atuais, faz-se necessário examinar as arquiteturas pre-

cursoras, compreendendo como a busca pela captura eficiente de dependências de

longo alcance motivou a migração dos métodos estatísticos para as abordagens de



2.1 Large Language Model 5

aprendizado profundo.

2.1.1 Das Abordagens Estatísticas à Arquitetura Transformer

Historicamente, antes da predominância do aprendizado profundo, o PLN foi

regido por paradigmas simbólicos e estatísticos que não utilizavam redes neurais.

Essa era foi marcada pelo uso de modelos de n-gram, que operavam baseando-se

estritamente na contagem de frequência de palavras em janelas curtas de contexto

para estimar qual palavra deveria vir a seguir (JURAFSKY; MARTIN, 2025). Outras

abordagens clássicas, como os Hidden Markov Modelss (HMMs), foram fundamentais

para tarefas como reconhecimento de fala, baseando-se em tabelas de probabilidade

de transição entre estados. No entanto, essas técnicas dependiam de probabilidades

fixas calculadas sobre o texto de treinamento e sofriam com a escassez de dados ao

tentar lidar com sequências de palavras nunca vistas antes (JURAFSKY; MARTIN,

2025).

Posteriormente, a introdução de Recurrent Neural Networks (RNN) possibilitou

modelar dependências temporais e suas variantes, em especial Long Short-Term

Memory (LSTM), proposta por Hochreiter e Schmidhuber (1997), mitigou problemas

de gradiente e ampliou a capacidade de capturar dependências de maior alcance,

embora ambas as classes de modelo ainda sofressem limitações de paralelização

devido ao processamento sequencial.

Para mitigar a rigidez dos modelos estatísticos baseados em símbolos discretos,

houve a adoção de representações distribuídas, técnicas como word2vec de Mikolov

et al. (2013) e GloVe de Pennington, Socher e Manning (2014) passaram a codificar

relações semânticas em vetores densos. Isso permitiu uma generalização semântica

mais robusta, embora ainda dependesse de arquiteturas sequenciais para processar o

contexto.

Um marco importante nessa trajetória foi a criação do IBM Watson1, segundo

Ferrucci et al. (2010) ele combinava PLN, recuperação de informação e análise

probabilística em domínio aberto. Em 2011, o IBM Watson venceu competidores
1https : //www.ibm.com/watson
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humanos no programa televisivo Jeopardy!2, um quiz show de perguntas e respostas.

Embora Watson não fosse um modelo generativo, seu sucesso demonstrou a viabilidade

de sistemas capazes de interpretar perguntas complexas em linguagem natural.

Outro marco significativo ocorreu com AlphaGo3 em 2016, que venceu uma

partida do jogo de tabuleiro Go contra o campeão mundial Lee Se-dol4 evidenciou

o poder do Deep Reinforcement Learning combinado a redes neurais profundas e

infraestruturas de alto desempenho. Embora AlphaGo não seja um sistema de PLN,

seu impacto demonstrou o potencial de redes profundas e de hardware massivamente

paralelo como Graphics Processing Unit (GPU) e Tensor Processing Unit (TPU)

(SILVER et al., 2016).

A transformação arquitetural decisiva ocorreu em 2017 com o artigo Attention Is

All You Need, de Vaswani et al. (2017), que introduziu a arquitetura Transformer e o

mecanismo de self-attention, permitindo processamento paralelo eficiente e a captura

de dependências de longo alcance sem recorrência. As principais vantagens desta

arquitetura residem em sua capacidade de paralelização massiva, o que viabiliza o

treinamento de modelos gigantescos com alta eficiência em GPU e TPU. Além disso,

a arquitetura destaca-se pela modelagem eficiente de contextos de longo alcance e

por sua modularidade arquitetural, característica que permite a criação de variantes

flexíveis, como encoder-only, decoder-only e encoder-decoder.

A partir dos Transformers, sucederam-se marcos que definiram a era dos LLM,

transformando esses desenvolvimentos em infraestrutura cognitiva reutilizável para

diversas aplicações, o que Bommasani et al. (2021) caracteriza como modelos funda-

cionais. O ano de 2018 foi crucial para essa consolidação: o Generative Pre-trained

Transformer (GPT) inaugurou o paradigma de pré-treinamento em grandes conjuntos

de dados seguido de fine-tuning supervisionado (RADFORD et al., 2018), enquanto

o Bidirectional Encoder Representations from Transformers (BERT) revolucionou a

compreensão textual ao introduzir o mascaramento de tokens e arquiteturas bidireci-

onais (DAVIS, 2018). Na sequência, o lançamento do GPT-2 em 2019 demonstrou,
2https : //www.ibm.com/history/watson− jeopardy
3https : //deepmind.google/research/alphago/
4https : //www.bbc.com/news/technology − 35785875
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pela primeira vez, a capacidade de geração coerente em larga escala, incitando debates

iniciais sobre segurança e riscos de modelos generativos (RADFORD et al., 2019).

A evolução arquitetural prosseguiu com propostas de unificação e generalização.

Modelos como o Text-to-Text Transfer Transformer (T5) estabeleceram que todas

as tarefas de PLN poderiam ser tratadas como problemas de transformação de texto

para texto (RAFFEL et al., 2020), enquanto o Bidirectional and Auto-Regressive

Transformers (BART) combinou os princípios de encoder-decoder para unificar

reconhecimento e geração em uma só arquitetura (LEWIS et al., 2020). O ápice dessa

fase ocorreu em 2020 com o GPT-3, que introduziu o conceito de in-context learning,

permitindo que o modelo aprendesse novas tarefas apenas através de exemplos

fornecidos no próprio prompt, eliminando a necessidade de fine-tuning adicional para

diversos casos de uso (BROWN et al., 2020).

2.2 Arquiteturas de Acesso a LLM

A crescente complexidade computacional dos modelos fundacionais e, em especial,

dos modelos de fronteira, define um cenário em que apenas grandes organizações

dispõem de recursos suficientes para treinar e executar tais modelos localmente. Os

modelos de fronteira representam as instâncias mais avançadas desses sistemas, alcan-

çando o nível mais elevado de desempenho multitarefa, capacidade de generalização

e eficiência no processamento de grandes quantidades de informação.

O treinamento e a manutenção operacional de modelos, como o GPT-5.15 ou o

Gemini 2.5 Pro6 , dependem de infraestrutura massivamente paralela, baseada em

clusters de GPUs e TPUs, além de investimentos financeiros extremamente elevados,

inacessíveis para a maior parte das organizações. Strubell, Ganesh e McCallum (2019)

destacam que tanto o custo energético quanto a exigência de hardware especializado

para sustentar modelos dessa magnitude criam barreiras financeiras significativas,

ultrapassando as capacidades típicas de empresas de médio porte e centros de pesquisa

independentes.
5https://platform.openai.com/docs/guides/latest-model
6https://docs.cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro?hl=pt-br
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2.2.1 SaaS

Diante dessa barreira econômica e técnica, o modelo de distribuição de software

SaaS consolidou-se como o principal mecanismo de disponibilização desses sistemas ao

público. Nesse paradigma, os provedores hospedam os modelos em infraestrutura de

nuvem e os disponibilizam por meio de interfaces acessíveis via internet, geralmente

mediante assinatura ou cobrança por uso token.

Um token representa o menor elemento linguístico processado pelo modelo,

podendo corresponder a palavras inteiras, subpalavras ou fragmentos de caracteres.

Em modelos modernos a contagem de tokens é realizada usando o algoritmoByte

Pair Encoding (BPE), que equilibra eficiência computacional e preservação semântica

(SENNRICH; HADDOW; BIRCH, 2016).

Choudhary (2007) observa que o SaaS reduz a necessidade de instalação, manuten-

ção e escalabilidade local, democratizando o acesso a serviços altamente especializados.

A partir desse modelo de distribuição, consolidaram-se dois modos principais de acesso

a esses sistemas, diferenciados fundamentalmente pelo ator que inicia e gerencia a

requisição.

2.2.1.1 Interação Humano-Modelo

Esta modalidade refere-se ao uso direto dos modelos por usuários finais através

das aplicações oficiais mantidas por provedores, como ChatGPT7 e Gemini8. Nesse

caso, a comunicação é mediada por uma Graphical User Interface (GUI), dispensando

configurações técnicas complexas.

Todo o fluxo de interação, da construção da mensagem ao recebimento da resposta,

é abstraído pela aplicação que gerencia o estado da conversa e a formatação visual.

O objetivo aqui é oferecer uma experiência de uso acessível, intuitiva e exploratória,

onde a latência e a precisão são percebidas subjetivamente pelo usuário humano.
7https : //chatgpt.com/
8https : //gemini.google.com/app
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2.2.1.2 Interação Sistema-Modelo

A interação sistema-modelo corresponde ao consumo do LLM como um com-

ponente de software integrado a aplicações de terceiros via API. Nesse cenário,

o LLM não responde a um humano diretamente, mas atua como um módulo de

processamento dentro da arquitetura de um sistema cliente.

Diferentemente da interação humano-modelo, essa abordagem possibilita auto-

mação em larga escala, integração com fluxos de trabalho corporativos e controle

arquitetural rigoroso. É o padrão utilizado para construir assistentes virtuais custo-

mizados, analisadores de documentos e agentes autônomos.

2.2.2 Fluxos de Geração

As APIs utilizadas para acessar LLMs não constituem sistemas monolíticos. Pelo

contrário, são compostas por múltiplos endpoints, cada um projetado para atender

diferentes demandas de interação, desempenho e contexto de uso. Esses padrões

de comunicação estruturam como o back-end cliente realiza requisições e como o

servidor do LLM devolve as respostas. Para os propósitos deste trabalho, destacam-se

quatro fluxos principais: Geração Síncrona, Geração por Streaming, Embeddings e

Arquitetura Retrieval-Augmented Generation (RAG).

2.2.2.1 Geração Síncrona

O fluxo de geração síncrona segue o paradigma clássico da web baseado no modelo

Representational State Transfer (REST), nesse formato o back-end cliente envia uma

requisição Hypertext Transfer Protocol (HTTP) contendo o prompt completo. A API

do LLM processa a solicitação e mantém a conexão aberta até concluir totalmente a

geração do texto, retornando o resultado em um único bloco. Trata-se de um fluxo

simples, amplamente compatível com arquiteturas já existentes e adequado para

operações não interativas. Entretanto, como todo o processamento ocorre antes da

devolução da resposta, o usuário final pode experimentar alta latência perceptível

em prompts mais complexos (XIAO; YANG, 2025).



2.2 Arquiteturas de Acesso a LLM 10

2.2.2.2 Geração por Streaming

Para cenários que exigem maior interatividade, como chatbots, sistemas de aten-

dimento ou aplicações que precisam apresentar respostas progressivamente, as API

oferecem o modo streaming. Nesse padrão, o servidor do LLM envia partes da

resposta, muitas vezes token a token, à medida que a geração ocorre esse mecanismo

é viabilizado por recursos do protocolo HTTP. O back-end cliente pode então re-

transmitir imediatamente esses fragmentos ao fron-tend, proporcionando sensação de

fluidez e reduzindo a latência percebida pelo usuário (XIAO; YANG, 2025).

2.2.2.3 Embeddings

Diferentemente dos fluxos de geração textual, o endpoint de embeddings retorna

uma representação matemática do texto. Embeddings são vetores densos de alta

dimensionalidade que capturam propriedades semânticas, permitindo medir similari-

dade e relações contextuais entre trechos de texto (JURAFSKY; MARTIN, 2025).

Nesse fluxo, o back-end cliente envia uma entrada textual e recebe o vetor corres-

pondente, que pode ser usado em aplicações como mecanismos de busca semântica,

recomendação, categorização e detecção de similaridade contextual.

2.2.2.4 RAG

A abordagem RAG não corresponde a um endpoint específico, mas sim a um

padrão arquitetural que combina geração de texto com recuperação de conhecimento

externo, buscando superar limitações de memória e atualização dos LLM (GAO et

al., 2024). O padrão RAG é especialmente importante para aplicações que dependem

de dados privados, informação atualizada ou conteúdos altamente especializados.

O fluxo típico de uma abordagem RAG é gerenciado por um componente orques-

trador e envolve: (i) o envio do prompt inicial ao endpoint de embeddings para sua

conversão em um vetor de busca; (ii) a consulta desse vetor a uma base externa,

geralmente um banco vetorial, para identificar documentos semanticamente rele-

vantes; (iii) a seleção e incorporação dos documentos recuperados como contexto
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adicional ao prompt ; (iv) o envio do prompt enriquecido ao endpoint de geração, de

forma síncrona ou em streaming, permitindo respostas mais precisas, atualizadas e

contextualizadas.

A compreensão dos modelos de fronteira, das restrições infraestruturais que

definem seu uso e dos diferentes modos de interação oferecidos pelos provedores

estabelece a base necessária para analisar como sistemas clientes podem explorar

essas capacidades de forma eficiente. Seja por meio de interfaces humanas ou

integrações automatizadas via API, o comportamento dos LLMs depende diretamente

da estrutura do prompt, da escolha do fluxo de geração e do gerenciamento adequado

do contexto. Esses elementos, embora muitas vezes abstraídos no uso cotidiano,

tornam-se cruciais quando a aplicação exige previsibilidade, controle e desempenho

consistente.

Nesse cenário, torna-se evidente que o simples acesso ao modelo não é suficiente

para garantir resultados de qualidade ou estabilidade operacional. O desenvolvimento

de soluções apoiadas em LLMs demanda práticas rigorosas de engenharia de prompts,

mecanismos de monitoramento contínuo e estratégias de observabilidade capazes de

capturar métricas, falhas e variações de comportamento ao longo do tempo.

Esses fatores levam à próxima seção, que aprofunda as metodologias de construção,

avaliação e acompanhamento de interações com modelos generativos, evidenciando

como tais práticas são essenciais para o uso confiável e sustentável dessas tecnologias

em ambientes de produção.

2.3 Engenharia de Prompt e Observabilidade de LLM

Uma vez estabelecida na seção anterior a interação sistema-modelo, esta seção

aprofunda-se nos desafios operacionais e nos novos paradigmas de gerenciamento

que emergem dessa interação. Diferentemente de sistemas de software tradicionais,

cujo comportamento é deterministicamente definido por regras explícitas, métodos

formais e instruções rígidas, a interação com LLMs possui natureza probabilística,

contextual e dependente de linguagem natural. Essa característica modifica de ma-
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neira significativa os mecanismos tradicionais de controle, depuração e previsibilidade

do software.

Nesse novo cenário, duas disciplinas tornam-se centrais: Engenharia de Prompt e

Observabilidade de LLM. A primeira atua como mecanismo primário de controle

qualitativo e funcional sobre o comportamento do modelo; a segunda fornece os meios

quantitativos e analíticos para aferir, monitorar e otimizar esse comportamento em

ambientes produtivos.

2.3.1 Engenharia de Prompt

A Engenharia de Prompt é a disciplina dedicada ao projeto, construção e otimi-

zação das entradas textuais destinadas a orientar um modelo fundacional a produzir

respostas alinhadas ao objetivo do usuário (LIU et al., 2023b).

Em sistemas baseados em LLMs, o prompt funciona como uma interface de pro-

gramação conceitual, na qual o desenvolvedor especifica comportamentos, restrições,

estilo e contexto por meio de linguagem natural. A estrutura, a clareza e o grau de

contexto incluído no prompt influenciam diretamente a qualidade, a precisão e o custo

operacional associado à geração do modelo. O desempenho do modelo é altamente

sensível à formulação da entrada, o que motivou o surgimento de técnicas formais

de engenharia de prompt (ZHOU et al., 2023) . Entre as principais abordagens,

destacam-se:

• Instrução Direta: O modelo é instruído a realizar uma tarefa sem nenhum

exemplo prévio como um prompt, e.g., “Traduza este texto para o francês: [...]”

(LIU; NEUBIG; ANDREAS, 2024).

• Instrução com Exemplos: O modelo recebe, no próprio prompt, uma pequena

quantidade de exemplos de entrada e saída, e.g., “Q: ’maçã’ é ’apple’. Q: ’uva’

é [...]”. Esta técnica aumenta significativamente a performance em tarefas

específicas (LIU; NEUBIG; ANDREAS, 2024).

• Indução a Cadeia de Pensamento: Consiste em instruir o modelo a “pensar

passo a passo” ou “explicar seu raciocínio” antes de dar a resposta final. Wei et
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al. (2022) demonstram que esta simples adição ao prompt melhora significa-

tivamente a capacidade do modelo em tarefas de raciocínio complexo, como

problemas matemáticos ou lógicos.

• Padrões de Prompt Avançados: Técnicas mais recentes, como ReAct, combinam

a Indução a Cadeia de Pensamento com o uso de ferramentas, permitindo ao

LLM decidir quando consultar uma API externa como parte de seu processo

de pensamento para formular uma resposta (YAO et al., 2022).

Um ponto essencial da engenharia de prompt é que ela não se limita a fazer

a pergunta certa, mas constitui um processo iterativo de design, cujo impacto é

simultaneamente técnico e econômico. O conteúdo do prompt determina a quantidade

de tokens de entrada, a extensão e complexidade da resposta, a latência da geração

de resposta e o custo financeiro da requisição

Prompts baseados na técnica de Indução a Cadeia de Pensamento tendem a

produzir respostas significativamente mais longas, ampliando o custo de saída. De

modo semelhante, fluxos baseados em RAG formam prompts compostos, integrando

instruções, pergunta do usuário e documentos recuperados, o que expande substanci-

almente o número de tokens de entrada. Assim, cada decisão de design de prompt

envolve trade-offs explícitos entre clareza, precisão, latência e custo. O prompt,

portanto, constitui a principal alavanca de controle disponível ao desenvolvedor para

regular o comportamento do modelo. Essa relação direta entre design, qualidade e

custo cria a necessidade de uma disciplina complementar: a observabilidade, que

permite mensurar, diagnosticar e otimizar sistematicamente os efeitos das estratégias

de engenharia de prompt em ambientes reais.

A medida que as técnicas de engenharia de prompt evoluem de instruções simples

para estruturas complexas como Indução a Cadeia de Pensamento e ReAct, observa-se

um aumento proporcional na imprevisibilidade do comportamento do sistema. O

prompt deixa de ser uma variável estática para se tornar um componente dinâmico que

impacta diretamente o consumo de recursos e a latência da aplicação. Essa correlação

direta entre a sofisticação do design do prompt e seus custos operacionais evidencia

que o controle qualitativo, por si só, é insuficiente. Torna-se imperativo, portanto,
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estabelecer mecanismos quantitativos rigorosos para monitorar essas interações,

dando origem à disciplina de Observabilidade de LLM.

2.3.2 Observabilidade de LLM

O conceito de observabilidade tem origem na teoria de controle de Kálmán (1960),

mas ganhou relevância contemporânea na engenharia de software e em práticas

DevOps, onde é definido como a capacidade de inferir o estado interno de um sistema

a partir de suas saídas externas. Em sistemas tradicionais, essa observabilidade é

estruturada nos chamados três pilares: métricas, logs e traces (SRIDHARAN, 2018).

Entretanto, quando aplicada a sistemas baseados em LLM, a observabilidade

assume uma complexidade inteiramente nova. As ferramentas tradicionais de ob-

servabilidade não foram projetadas para lidar com as características probabilísticas,

semânticas e financeiras que emergem do uso de APIs de LLMs. Esse novo cenário

exige a ampliação da observabilidade para três dimensões adicionais: custo, qualidade

semântica e latência (HUYEN, 2022).

2.3.2.1 Observabilidade de Custo

Em sistemas tradicionais, o custo de uma chamada de API é computacionalmente

marginal e faturado de forma agregada, e.g., custo por hora do servidor. Em SaaS

integrados a LLM, o custo financeiro é variável e direto, faturado por chamada com

base nos tokens processados.

A observabilidade de custo exige que o sistema registre a quantidade de tokens

no prompt e a quantidade de tokens na resposta para cada interação, pois o custo é

determinado com base no consumo total tokens. O mapeamento de custos deve ser

realizado multiplicando o total de tokens pelo preço específico do modelo, dessa forma

convertendo dados de uso técnico em valores financeiros (VELASCO; TSIRTSIS;

GOMEZ-RODRIGUEZ, 2025; SUN et al., 2025).
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2.3.2.2 Observabilidade de Qualidade

Um sistema de software tradicional falha de forma binária e explícita retornando o

código HTTP de status de falha ou sucesso. Uma API de LLM, por outro lado, pode

ser sintaticamente bem-sucedida, mas semanticamente falha. Para Ji et al. (2023)

a falha semântica mais comum é a “alucinação”, onde o modelo gera informações

factualmente incorretas, mas de forma plausível e confiante. Para mitigar esses riscos,

Liang et al. (2022), Chang et al. (2023) sugerem métricas de avaliação holística e

feedback humano.

A observabilidade de qualidade deve, portanto, ir além dos códigos de status

HTTP, buscando armazenar a carga útil do prompt e resposta de cada interação

para análises posteriores, correlacionar a avaliação do usuário a cada interação além

de monitorar o tráfego em busca de dados sensíveis, toxicidade ou falhas em seguir

as instruções do sistema.

2.3.2.3 Observabilidade de Latência

A latência em uma API de LLM é inerentemente superior e mais volátil do

que em uma API tradicional, sendo influenciada por fatores dinâmicos como o

tamanho do prompt, a complexidade instrucional e a quantidade de tokens gerados.

Essa característica exige uma mudança de paradigma na medição de performance,

priorizando a percepção do usuário em detrimento apenas do tempo total de execução.

Para compreender o impacto real na experiência do usuário, a medição de performance

é decomposta em três métricas (GOEL et al., 2025).

A Time To Last Token (TTLT) corresponde ao tempo total decorrido entre o

envio do prompt e o recebimento do último caractere da resposta. É a métrica padrão

para chamadas síncronas, onde o sistema aguarda a conclusão total do processamento.

No entanto, como o TTLT é proporcional ao tamanho da resposta gerada, ele pode

variar drasticamente sem indicar degradação na saúde do servidor (GOEL et al.,

2025).

Outra métrica importante é a Time To First Token (TTFT) que representa o
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intervalo de tempo que o usuário aguarda até visualizar o primeiro fragmento de

conteúdo. Em interfaces conversacionais, esta é a métrica crítica de percepção de

velocidade. Um TTFT baixo cria uma sensação de resposta imediata, influenciando

o usuário a cerca da capacidade de resposta do LLM (GOEL et al., 2025).

Uma terceira métrica auxilia na avaliação de latência, conhecida como Time

Between Tokens (TBT) ela mede o intervalo entre a geração de tokens de saída

consecutivos de uma solicitação e afeta a fluidez percebida da resposta, o que é

particularmente importante para aplicativos interativos, nos quais os usuários esperam

um fluxo contínuo e ininterrupto de conteúdo gerado (GOEL et al., 2025).

A implementação eficiente desse sistema de observabilidade multifacetada exige

um ponto centralizado de coleta, agregação e análise de dados. Delegar essa respon-

sabilidade de forma distribuída entre microsserviços ou equipes de desenvolvimento

distintas não apenas introduziria redundâncias e inconsistências, como também

ampliaria o risco operacional ao dificultar auditorias, diagnósticos e o monitoramento

contínuo da qualidade das respostas geradas. Em um cenário no qual os LLMs ope-

ram como componentes críticos de aplicações sensíveis, a ausência de um mecanismo

unificado de visão e controle compromete diretamente a confiabilidade do sistema

como um todo.

Essa constatação evidencia um desafio estratégico que embora o ecossistema atual

ofereça ferramentas consolidadas, ele carece de soluções que conciliem simplicidade

operacional, autonomia organizacional e suporte nativo às particularidades do uso

de modelos de linguagem em produção. É justamente nessa lacuna que este trabalho

se insere.

No capítulo seguinte, é apresentada a proposta de solução, detalhando como

uma plataforma de observabilidade especializada para LLMs pode unificar métri-

cas, registros e fluxos de análise, fornecendo uma camada essencial de governança,

rastreabilidade e confiabilidade para aplicações que dependem desses modelos.



Capítulo 3

Proposta

Com base na fundamentação teórica apresentada no Capítulo 2, que estabeleceu os

conceitos de LLMs e a necessidade crítica de observabilidade, este capítulo detalha a

proposta da solução desenvolvida neste trabalho. O objetivo central é especificar uma

plataforma de gateway de observabilidade capaz de interceptar, auditar e gerenciar

as interações entre aplicações clientes e provedores de IA, visando mitigar os desafios

operacionais de baixa visibilidade, imprevisibilidade de custos e latência através de

uma arquitetura que prioriza a soberania dos dados e a simplicidade de integração.

A estrutura do capítulo organiza-se de forma progressiva, iniciando pela análise

das motivações práticas e de ferramentas de observabilidade de LLMs, para identificar

as lacunas que justificam o desenvolvimento da ferramenta. Na sequência, define-se a

arquitetura modular da solução, culminando na formalização da especificação técnica

através dos requisitos funcionais, regras de negócio, casos de uso e modelagem de

dados, que estabelecem o contrato de comportamento esperado para a implementação

descrita no capítulo seguinte.

3.1 Motivação

Os LLMs transcenderam o ambiente acadêmico para se tornar um motor de

inovações disruptivas na indústria. No entanto, a consolidação dos LLM como
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ferramenta de uso comercial em massa, catalisada pelo lançamento de ferramentas

como o ChatGPT1 em 2022, inaugurou um novo paradigma de engenharia de software

(RIO-CHANONA; LAURENTSYEVA; WACHS, 2024). Empresas de todos os portes,

desde startups até gigantes tecnológicas, aceleraram a integração desses modelos em

produtos que variam de copilotos de produtividade a sistemas de decisão complexos.

Organizações que integram LLM a seus softwares enfrentam um cenário de “caixa-

preta”, onde as interações com as APIs de LLMs são fechadas e difíceis de monitorar,

uma vez que a natureza proprietária dos modelos impede o acesso ao seu funcio-

namento interno, comprometendo desta forma a auditoria dessa integração (LIAO;

VAUGHAN, 2023). Os desafios decorrentes dessa falta de visibilidade manifestam-se

em diversas frentes críticas.

A dependência de API de terceiros, cobradas por token, introduz uma variabilidade

financeira inexistente em softwares determinísticos tradicionais. Sem uma visibilidade

granular do consumo de recursos por requisição, as organizações perdem a capacidade

de otimizar prompts ou alocar orçamentos de forma eficiente, resultando em despesas

imprevistas que podem comprometer a viabilidade econômica de projetos (DIAZ-

DE-ARCAYA et al., 2024).

Não menos crítica é a questão da confiabilidade e da qualidade semântica, LLMs

são mecanismos probabilísticos sem compreensão do mundo real, propensos a “alu-

cinações” que consiste na geração de informações factualmente incorretas com alta

convicção (JI et al., 2023). Adicionalmente, Bender et al. (2021) argumentam que

esses modelos operam como “papagaios estocásticos”, copiando padrões linguísticos e

replicando vieses sociais presentes nos dados de treinamento. Essa tendência de gerar

conteúdo enviesado ou incorreto representa um risco de reputação e ético severo para

aplicações corporativas.

No âmbito da proteção de dados, emergem vulnerabilidades críticas de segurança

e privacidade, uma vez que os modelos podem inadvertidamente revelar informações

sensíveis ou facilitar ataques cibernéticos (LIAO; VAUGHAN, 2023). A arquite-

tura de interação dos LLM expõe novas superfícies de ataque, como a injeção de
1https : //chatgpt.com/
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prompt, classificada como a vulnerabilidade número um no OWASP Top 10 for

LLM Applications2. Segundo Greshake et al. (2023), a incapacidade do modelo

em distinguir instruções de sistema de entradas de usuário permite que comandos

maliciosos sobrescrevam diretrizes de segurança, criando riscos de vazamento de

dados e manipulação de comportamento.

As aplicações atuais raramente se limitam a uma única chamada de LLM, elas

são construídas como cadeias ou agentes autônomos que interagem com múltiplas

ferramentas em ciclos iterativos de raciocínio e ação (XI et al., 2023). Essa arquitetura

gera históricos de contexto extensos, exacerbando problemas como o fenômeno lost

in the middle, onde o modelo falha em recuperar informações relevantes no meio de

um contexto longo (LIU et al., 2023a). Rastrear a origem de erros em tais sistemas

distribuídos utilizando apenas ferramentas de logs convencionais torna-se inviável,

uma vez que a interação dinâmica entre múltiplos componentes dificulta a descoberta

da causa das falhas (LIAO; VAUGHAN, 2023).

Esses desafios interconectados, custos imprevisíveis, alucinações, vulnerabilidades

de segurança e complexidade de agentes, formam a motivação central para este

trabalho. Eles evidenciam a necessidade urgente de uma nova classe de ferramentas

de engenharia: plataformas de observabilidade especializadas em LLMs, capazes de

transformar a “caixa-preta” probabilística das interações com LLMs em um sistema

transparente, gerenciável e confiável.

3.2 Trabalhos Relacionados

Para endereçar os complexos desafios operacionais de baixa visibilidade, custo

e latência descritos na seção anterior, o mercado de tecnologia desenvolveu um

vasto ecossistema de ferramentas de observabilidade. O panorama atual incluindo

desde extensões de plataformas de monitoramento tradicionais, como Datadog3,

até soluções especializadas em avaliação e depuração, como Opik4 e Lunary5. No
2https : //genai.owasp.org/resource/owasp− top− 10− for − llm− applications− 2025/
3https : //docs.datadoghq.com/llmobservability/
4https : //www.comet.com/site/products/opik/
5https : //lunary.ai/
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segmento de orquestração e gateways, ferramenta como Portkey6 disputa espaço com

funcionalidades avançadas de roteamento.

No entanto, uma análise exaustiva de todas as ferramentas disponíveis excederia

o escopo deste trabalho. Foram selecionadas quatro plataformas que ilustram de

forma representativa as principais abordagens de engenharia vigentes: a abordagem

ecossistêmica proprietária, a plataforma de engenharia de código aberto, a arquitetura

baseada em gateway e a instrumentação baseada em padrões abertos.

3.2.1 LangSmith

O LangSmith7 representa a referência atual em soluções proprietárias fortemente

acopladas a um ecossistema de desenvolvimento. Projetado para operar em conjunto

com os frameworks LangChain8 e LangGraph9, sua arquitetura distingue-se por

implementar um modelo de dados hierárquico capaz de renderizar a árvore de execução

completa de cadeias complexas e agentes autônomos. Diferentemente de ferramentas

tradicionais, o LangSmith permite a inspeção profunda de passos intermediários de

raciocínio e chamadas de ferramentas , além de suportar nativamente datasets de

referência para testes de regressão automatizados.

Contudo, essa integração profunda cobra seu preço em flexibilidade. Embora

ofereça uma experiência fluida para usuários do ecossistema LangChain, a ferramenta

apresenta riscos significativos de aprisionamento tecnológico. Por ser fundamental-

mente uma solução SaaS de código fechado, exige que dados sensíveis trafeguem para

a infraestrutura da LangChain Inc., o que pode violar requisitos de conformidade em

setores regulados. Além disso, sua eficácia e facilidade de instrumentação diminuem

substancialmente quando utilizada com stacks tecnológicas agnósticas.
6https : //portkey.ai/
7https : //www.langchain.com/langsmith/observability
8https : //www.langchain.com/
9https : //www.langchain.com/langgraph
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3.2.2 Langfuse

Posicionando-se como a alternativa agnóstica e de código aberto, a Langfuse10

adota uma arquitetura projetada para desacoplar a instrumentação da análise. A pla-

taforma utiliza SDKs assíncronos que enviam eventos de telemetria em segundo plano,

garantindo que o monitoramento não introduza latência na aplicação principal. Seu

modelo de dados é centrado no trace, enriquecido com metadados de custo, latência

e pontuações de qualidade, permitindo avaliações híbridas via “LLM-as-a-judge”,

que consiste na avaliação da resposta por um LLM diferente do qual consultado, ou

feedback humano.

A grande vantagem da Langfuse reside na soberania de dados, por ser open source

suporta a auto-hospedagem via contêineres Docker, possibilitando que empresas

mantenham todos os prompts e respostas dentro de sua própria nuvem privada. Essa

flexibilidade, no entanto, transfere a complexidade operacional para o usuário. No

modelo de auto hospedagem, a responsabilidade pela manutenção do banco de dados

e pela escalabilidade da ingestão de eventos recai inteiramente sobre a equipe de

engenharia da organização, elevando o custo total de propriedade em cenários de

alto volume.

3.2.3 Helicone

O Helicone11 materializa o conceito de gateway, posicionando-se como uma camada

de infraestrutura crítica que atua como um orquestrador de tráfego ativo entre as

aplicações clientes e os provedores de LLM. Ao centralizar múltiplas integrações em

um ponto único de entrada, a ferramenta abstrai a complexidade de gestão de APIs

e injeta funcionalidades avançadas diretamente na camada de rede. Construído sobre

uma infraestrutura de edge computing, o Helicone implementa estratégias de caching

na borda, permitindo que requisições frequentes sejam respondidas instantaneamente

para reduzir custos e latência, além de gerenciar políticas de resiliência, como novas

tentativas e fallbacks, e governança de acesso. Toda essa gestão é realizada de forma
10https : //langfuse.com/
11https : //www.helicone.ai/
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transparente, sem a necessidade de instrumentação intrusiva no código da aplicação,

bastando o redirecionamento da URL base do cliente HTTP.

Entretanto, essa arquitetura de intermediação introduz compensações arquitetu-

rais importantes. A consolidação do tráfego transforma o gateway em um ponto único

de falha na topologia da rede, onde sua indisponibilidade pode interromper o acesso

aos provedores de LLMs. Além disso, a necessidade operacional de descriptografar

e inspecionar o conteúdo das mensagens para funcionalidades de cache e observa-

bilidade exige um alto nível de confiança no provedor ou a opção mandatória pela

auto-hospedagem para preservar a confidencialidade de dados sensíveis em ambientes

corporativos.

3.2.4 Phoenix

Desenvolvida pela Arize12, a Phoenix13 representa a abordagem de observabilidade

focada na Ciência de Dados e na depuração profunda de sistemas RAG. Diferente

de plataformas puramente de engenharia, a Phoenix adota uma filosofia “local-first”,

sendo frequentemente executada diretamente em ambientes de desenvolvimento como

Jupyter Notebooks antes de ser implantada em produção. Sua arquitetura é projetada

para a visualização de dados de alta dimensionalidade, permitindo a inspeção não

apenas do texto gerado, mas dos vetores subjacentes.

O grande diferencial arquitetural da Phoenix é seu motor de visualização de

embeddings. Isso permite que engenheiros identifiquem visualmente clusters de

alucinações ou lacunas na base de conhecimento recuperada, algo impossível de

detectar apenas com logs textuais. Contudo, sua origem focada em notebooks pode

torná-la menos intuitiva para engenheiros de software tradicionais que buscam apenas

monitoramento de latência. Embora a versão open source seja poderosa para análise

local, a persistência de dados de longo prazo e a colaboração em equipe direcionam

o usuário para a plataforma comercial, criando uma barreira de entrada para o

monitoramento contínuo em produção sem custos associados.
12https : //arize.com/
13https : //phoenix.arize.com/
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3.2.5 Síntese Comparativa

A análise das plataformas LangSmith, Langfuse, Helicone e Phoenix revela que o

ecossistema de observabilidade para LLMs é marcado por abordagens distintas, cada

uma otimizando um conjunto específico de trade-offs entre integração, soberania de

dados, facilidade de instrumentação e profundidade analítica.

Essas plataformas demonstram que não existe uma solução universal: cada

abordagem resolve uma parte distinta do problema. Conforme detalhado na Tabela

3.1, enquanto LangSmith e Helicone priorizam simplicidade operacional por meio

de centralização seja de ecossistema ou de tráfego, Langfuse e Phoenix apostam

em maior abertura e flexibilidade, porém transferindo responsabilidades ao usuário.

Essa diversidade expõe uma lacuna no ecossistema: a ausência de uma solução

que concilie leveza operacional, soberania de dados, independência de ecossistema

e suporte nativo às necessidades específicas de aplicações baseadas em LLMs. É

justamente nessa interseção que a proposta deste trabalho se insere.

Tabela 3.1: Tabela Comparativa das Soluções Represen-

tativas de Observabilidade

Característica LangSmith Langfuse Helicone Phoenix

Funcionalidade

diferencial

Integração

com Lang-

Chain

Avaliação de

prompt

Otimização de

custo

Diagnóstico

profundo

Soberania de

Dados

Baixa Alta Baixa Alta

Complexidade

de Integração

Alta Média Muito baixa Média

Auto-

hospedagem

Não Sim Sim Sim

Fonte: Elaborado pelo autor.
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3.3 Proposta de Sistema

Após a análise dos desafios operacionais gerados pela integração de softwares

com LLMs e do ecossistema de ferramentas existentes, este trabalho propõe o

desenvolvimento de uma plataforma de observabilidade com diferenciais estratégicos.

O estudo dos trabalhos relacionados revelou um mercado composto por soluções

robustas, porém frequentemente associadas a alta complexidade, modelos de negócio

restritivos ou forte dependência de ecossistemas específicos. Esses fatores evidenciam

uma lacuna para uma solução que priorize simplicidade, soberania dos dados e

acessibilidade.

Diante desse cenário, a proposta deste trabalho concentra-se na criação de um

gateway de observabilidade leve e de código aberto, projetado para implantação

flexível e que permita às equipes manter controle sobre seus dados e infraestrutura.

A solução terá foco no monitoramento das métricas críticas que afetam a viabilidade

de aplicações baseadas em LLMs, como custo, latência e consumo de tokens, com

o objetivo de reduzir a barreira de entrada e proporcionar visibilidade operacional

sem que equipes precisem lidar com custos elevados ou complexidade excessiva de

integração.

Embora a arquitetura de referência aqui proposta tenha sido concebida para

ser agnóstica e extensível a múltiplos provedores de LLM, este trabalho delimita o

escopo de implementação e validação a API Gemini14. Esta decisão estratégica visa

viabilizar a prova de conceito focando na profundidade da observabilidade em um

único ecossistema, servindo como base para futuras expansões de adaptadores para

outros provedores

3.3.1 Módulos do Sistema

Para materializar esses objetivos, a solução proposta adota uma abordagem

centrada em governança e observabilidade de interações com LLMs. O sistema atua

como um gateway de API centralizado que fornece controle de acesso, auditoria
14https : //aistudio.google.com/
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detalhada e monitoramento de custos. A arquitetura foi concebida de forma modular,

separando claramente as responsabilidades do sistema, conforme detalhado nas

subseções seguintes.

3.3.1.1 Autenticação e Autorização

A segurança da plataforma é alicerçada em um módulo robusto responsável por

verificar a identidade dos usuários e governar suas permissões. Este componente

centraliza o fluxo de entrada no sistema e a distribuição de privilégios, garantindo

que funcionalidades sensíveis sejam acessadas apenas por entidades legítimas.

O sistema implementa um mecanismo de autenticação híbrido, capaz de operar

tanto com credenciais locais, como e-mail e senha, quanto com provedores externos

de identidade. Essa flexibilidade permite integrar diferentes fluxos de autenticação

sem comprometer a segurança ou a compatibilidade com ambientes corporativos.

A arquitetura de permissões é estruturada segundo o modelo de Role-Based

Access Control (RBAC), que define dois perfis nativos responsáveis por moldar a

interface de gerenciamento. O perfil de administrador possui acesso irrestrito às

funcionalidades de governança, podendo auditar, criar e revogar contas de usuários.

Já o usuário possui escopo limitado à administração de seus próprios recursos, como

dados pessoais e credenciais de segurança, acessíveis por meio de seu painel dedicado.

Integrado a este módulo está o gerenciamento de tokens de API. Diferentemente

do acesso via interface web, a interação com o gateway de LLM exige credenciais de

máquina de longa duração. A plataforma delega aos usuários a autonomia para gerar

e revogar seus próprios tokens de API, que atuam como as chaves de autenticação

para as requisições programáticas processadas pelo sistema.

3.3.1.2 Gateway de LLM

Este módulo constitui o núcleo funcional da solução, atuando como um gateway

centralizado para as interações com modelos de linguagem. A arquitetura do proces-

samento foi projetada priorizando a resiliência, o sistema utiliza internamente uma
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fila de tarefas para encapsular a lógica de comunicação externa. Essa abordagem

permite a implementação de mecanismos de tolerância a falhas, como novas tentativas

automáticas e backoff exponencial, mantendo, contudo, a interface síncrona para

o cliente. O controlador aguarda a conclusão do processamento interno antes de

retornar a resposta, preservando a semântica padrão do ciclo de requisição-resposta

do protocolo HTTP.

Neste módulo, a plataforma atua como um componente de mediação direta para

aplicações, operando através de um fluxo contínuo que se inicia com a interceptação

da requisição formatada nativamente pelo SDK. Simultaneamente ao tráfego de

dados, o sistema realiza o processamento interno, extraindo o payload e registrando

os dados de observabilidade antes de encaminhar a solicitação à API real do LLM. O

ciclo encerra-se com a adaptação de resposta, etapa crucial na qual o sistema formata

o retorno do modelo para espelhar com exatidão a estrutura de dados esperada pelo

SDK, assegurando uma integração transparente. Especificamente para este trabalho,

o módulo de adaptação será configurado para mimetizar os contratos de interface

da API Gemini, interceptando e traduzindo suas estruturas de requisição e resposta

específicas

Essa abordagem assegura que aplicações projetadas para o uso de SDKs de LLMs

possam adotar a plataforma de observabilidade sem necessidade de refatoração de

código, bastando a reconfiguração da baseURL no cliente HTTP do SDK.

3.3.1.3 Auditoria e Engenharia de Custos

Imediatamente após o processamento da requisição, o sistema aciona o pipeline de

auditoria, operacionalizando o objetivo central de transformar a baixa visibilidade de

interações com um LLM em um processo transparente e auditável. Diferentemente

de um proxy, que apenas direciona os dados, a plataforma garante a persistência

estruturada de cada interação, independentemente de seu desfecho, seja ele sucesso

ou falha.

O registro de auditoria não será apenas um log textual, mas um modelo de dados

relacional que captura três dimensões críticas para a observabilidade: os dados da
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transação, que incluem o identificador do usuário, o payload de entrada e a resposta

completa gerada pelo modelo, garantindo soberania e possibilidade de auditoria

forense ao serem mantidos na própria infraestrutura; as métricas de desempenho,

que abrangem o código de status HTTP e a latência end-to-end em milissegundos,

permitindo identificar gargalos de rede ou degradações do provedor; e as métricas de

custo, produzidas por um motor de precificação que, que após extrair a contagem

total tokens, consulta um catálogo interno que diferencia valores entre tokens de

entrada e saída para calcular e registrar com precisão o custo financeiro de cada

transação.

3.3.1.4 Dashboard

Para converter os dados brutos de auditoria em diagnóstico, a plataforma dispo-

nibiliza um dashboard analítico. Esta interface atua como a camada de apresentação,

permitindo que gestores e desenvolvedores visualizem o comportamento das aplicações

de IA em tempo real.

A interface organiza as informações em três níveis de granularidade: os indicadores

de desempenho, que apresentam métricas agregadas como custo total acumulado,

volume de requisições, taxa de erro e latência média para uma avaliação imediata

da saúde do sistema; a análise temporal e de tendências, composta por gráficos de

séries temporais que revelam padrões de consumo e possíveis anomalias, incluindo a

evolução diária de custos, a distribuição dos códigos de status e o comportamento

da latência ao longo do tempo; e a inspeção granular, oferecida por uma interface

de exploração de logs que exibe o histórico completo das interações, permitindo

examinar cada transação individual com seus prompts e respostas, o que é essencial

tanto para auditorias de qualidade quanto para processos de depuração.

3.3.2 Requisitos Funcionais

Os Requisitos Funcionais (RF) constituem a especificação comportamental do

software. Segundo Sommerville (2011), estes requisitos são declarações dos serviços

que o sistema deve fornecer, de como o sistema deve reagir a entradas específicas e
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de como deve se comportar em situações particulares. Eles definem as capacidades

operacionais da plataforma, cobrindo desde a autenticação até a visualização de

métricas. A Tabela 3.2 apresenta a lista completa das funcionalidades implementadas

no sistema.

Tabela 3.2: Tabela de Requisitos Funcionais

ID Requisito Descrição

RF-01 Cadastrar Usuá-

rio

O sistema deve permitir que um novo usuário se ca-

dastre fornecendo nome, e-mail e senha.

RF-02 Recuperar Senha O sistema deve permitir que o usuário solicite e re-

defina sua senha através de um link de recuperação

seguro enviado por e-mail.

RF-03 Encerrar Sessão O sistema deve permitir que um usuário autenticado

encerre sua sessão.

RF-04 Diferenciar Pa-

péis

O sistema deve diferenciar os usuários em dois papéis:

usuário e administrador.

RF-05 Listar Usuários O sistema deve permitir que administradores listem

todos os usuários cadastrados na plataforma.

RF-06 Criar Usuário O sistema deve permitir que administradores criem

novos usuários manualmente.

RF-07 Editar Usuário O sistema deve permitir que administradores editem

as informações de qualquer usuário.

RF-08 Excluir Usuário O sistema deve permitir que administradores excluam

usuários da plataforma.

RF-09 Personificar

Conta

O sistema deve permitir que administradores “perso-

nifiquem” a conta de um usuário para fins de suporte.

RF-10 Gerenciar Perfil O sistema deve permitir que qualquer usuário auten-

ticado gerencie seu próprio perfil.

RF-11 Gerar Token O sistema deve permitir que um usuário autenticado

gere tokens de API para interagir com o gateway.
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ID Requisito Descrição

RF-12 Listar Tokens O sistema deve permitir que um usuário autenticado

liste todos os seus tokens de API gerados.

RF-13 Revogar Token O sistema deve permitir que um usuário autenticado

revogue seus tokens de API a qualquer momento.

RF-14 Autenticar

Requisições

O sistema deve autenticar todas as requisições de API

através do token gerado.

RF-15 Disponibilizar

Interface

O sistema deve disponibilizar uma interface de co-

municação compatível com o SDK que mimetize o

formato oficial do provedor.

RF-16 Adaptar Requi-

sição

O sistema deve ser capaz de interpretar a requisição no

formato nativo, extrair os dados e formatar a resposta

preservando o contrato do SDK.

RF-17 Consultar Cache Antes de encaminhar a requisição ao provedor, o sis-

tema deve consultar o banco de dados buscando por

uma requisição que tenha o mesmo prompt e modelo,

retornando a resposta armazenada se encontrada.

RF-18 Aguardar Pro-

cessamento

O sistema deve aguardar o resultado do processamento

interno para retornar a resposta na mesma requisição

HTTP.

RF-19 Registrar Audi-

toria

O sistema deve registrar cada requisição feita a API

do LLM em um histórico de auditoria, associando-a

ao usuário.

RF-20 Persistir Payload O registro de auditoria deve armazenar os dados com-

pletos da requisição e da resposta gerada.

RF-21 Registrar Desem-

penho

O sistema deve registrar as métricas de desempenho,

incluindo status e latência da API externa.

RF-22 Contabilizar To-

kens

O sistema deve registrar as métricas de uso de tokens

de entrada e saída para cada requisição.
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ID Requisito Descrição

RF-23 Calcular Custos O sistema deve calcular o custo monetário exato de

cada requisição com base nos tokens e na tabela de

preços.

RF-24 Apresentar

Dashboard Analí-

tico

O sistema deve apresentar um dashboard contendo es-

tatísticas agregadas e gráficos temporais sobre custos,

volume de requisições e latência.

RF-25 Visualizar Histó-

rico

O sistema deve permitir que o Usuário visualize seu

histórico pessoal de requisições em lista.

RF-26 Inspecionar De-

talhes

O sistema deve permitir que o Usuário inspecione os

detalhes de uma requisição específica.

RF-27 Visualizar Dados

Globais

O sistema deve permitir que o Administrador visualize

o dashboard com dados agregados de todos os usuários.

RF-28 Filtrar Métricas O sistema deve permitir que o Administrador filtre os

dados do dashboard para visualizar métricas de um

usuário específico.

3.3.3 Regras de Negócio

Para assegurar que a plataforma atenda aos objetivos de governança e observabili-

dade estabelecidos, o comportamento do sistema foi estruturado sobre um conjunto de

Regras de Negócio (RN). Conforme define Sommerville (2011), estas regras derivam

das políticas organizacionais e do domínio da aplicação, impondo restrições sobre

o funcionamento do sistema para garantir que ele opere em conformidade com os

processos e padrões da empresa. A Tabela 3.3 apresenta a especificação consolidada

das regras e sua relação direta com os RF correspondentes.
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Tabela 3.3: Tabela de Regras de Negócio

ID Regra de

Negócio

Descrição RFs

RN001 Autenticação

Híbrida

O sistema deve aceitar autenticação via provedor

de identidade federada e credenciais locais.

RF01,

RF05

RN002 Unicidade de

Conta

Não é permitido o registro de múltiplos usuários

com o mesmo endereço de e-mail.

RF01

RN003 Recuperação

Segura

A redefinição de senha deve ocorrer exclusiva-

mente via link temporário e de uso único enviado

ao e-mail cadastrado.

RF02

RN004 Hierarquia

de Papéis

O sistema deve distinguir estritamente as permis-

sões entre os papéis de administrador e usuário.

RF06,

RF09,

RF12

RN005 Gestão Ad-

ministrativa

Apenas usuários com papel de administrador po-

dem listar, criar ou personificar outros usuários.

RF07,

RF08,

RF09,

RF10,

RF11

RN006 Soberania de

Tokens

Usuários autenticados devem ter autonomia para

gerar e revogar seus próprios tokens de API .

RF14,

RF15,

RF16

RN007 Validação de

Token

O sistema deve interceptar requisições e exigir

autenticação via cabeçalho Authorization, vali-

dando integridade antes do processamento.

RF15,

RF16

RN008 Campos

Obrigatórios

Requisições devem conter, obrigatoriamente, o

corpo da mensagem e a identificação do modelo

de destino.

RF16
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ID Regra de

Negócio

Descrição RFs

RN009 Estratégia

de Cache

O sistema deve verificar a existência de prompt

prévio idêntico. Em caso de correspondência,

deve retornar a resposta armazenada imediata-

mente.

RF17,

RF20

RN010 Resiliência e

Retries

Em caso de falha de comunicação com o prove-

dor, o sistema deve realizar até três tentativas

de reexecução com estratégia de exponential bac-

koff.

RF18

RN011 Processar In-

teração em

Fila

O processamento da interação externa deve ser

encapsulado em uma fila de jobs interna, man-

tendo a interface síncrona para o cliente.

RF18

RN012 Falha Defini-

tiva

Após o esgotamento das tentativas de reexe-

cução, o sistema deve registrar o erro perma-

nentemente e retornar uma mensagem de falha

formatada.

RF18,

RF24

RN013 Persistência

Mandatória

Todas as transações processadas pelo sistema,

sejam elas bem-sucedidas, falhas ou provenien-

tes de cache, devem ser registradas de forma

persistente no banco de dados.

RF21

RN014 Metadados

de Auditoria

O registro deve conter, minimamente: ID do

usuário, timestamp, latência , status code, origem

da resposta, prompt e resposta.

RF23,

RF24,

RF28

RN015 Cálculo de

Custo

O sistema deve calcular o custo financeiro

baseando-se na contagem de tokens multipli-

cada pela tabela de preços vigente. Respostas

de cache devem ter custo zero ou reduzido.

RF23,

RF24
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ID Regra de

Negócio

Descrição RFs

RN016 Privacidade

e Segregação

O administrador tem acesso a métricas globais

e individuais. Contudo, o acesso ao conteúdo

bruto das transações, histórico de requisições e

respostas, é restrito exclusivamente ao usuário

proprietário.

RF25,

RF26,

RF27,

RF28

3.3.4 Casos de Uso

Para Sommerville (2011), casos de uso são uma técnica fundamental de modela-

gem de requisitos que descreve as interações entre os usuários e o sistema, focando

em como o software deve responder a estímulos externos para alcançar um objetivo

específico. Eles servem como uma ponte entre os requisitos funcionais abstratos e

a implementação técnica, fornecendo um contexto narrativo para a validação das

regras de negócio. A seguir segue os principais casos de uso do sistema.

UC01: Cadastrar Usuário

Ator Principal: Usuário

Descrição: Permitir que um usuário crie uma conta fornecendo nome, e-mail e

senha válidos.

Pré-condição: O usuário não possuir conta no sistema.

Pós-condição: Conta criada no sistema.

Fluxo Principal:

1. O usuário acessa a página de cadastro.

2. O sistema exibe o formulário com os campos de nome, e-mail e senha.

3. O usuário preenche os dados e submete o formulário.
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4. O sistema valida a unicidade do e-mail e a complexidade da senha.

5. O sistema cria a nova conta com perfil usuário.

6. O sistema autentica o usuário e o redireciona para a página de dashboard.

Fluxo Alternativo (5): E-mail inválido ou já cadastrado

1. O sistema detecta que o e-mail informado já está cadastrado ou possui for-

mato inválido, exibe uma mensagem de erro e destaca o campo para correção

retornando ao passo 2 do Fluxo Principal.

Fluxo Alternativo (5): Senha não atende os critérios mínimos de segurança

1. O sistema detecta que que a senha não atingiu os critérios mínimos, destacando

o campo para correção e retorna para passo 2 do Fluxo Principal.

UC02: Fazer Login

Ator Principal: Usuário

Descrição: Permitir que um usuário inicie uma sessão no sistema.

Pré-condição: O usuário deve possuir conta ativa no sistema ou conta do Google

ativa.

Pós-condição: Usuário autenticado e direcionado para a página de Dashboard.

Fluxo Principal:

1. O usuário acessa a página de login.

2. O sistema apresenta o formulário de credenciais com os campos para e-mail e

senha e o botão “Entrar com Google”.

3. O usuário insere as credenciais locais, e-mail e senha, e confirma.

4. O sistema valida as credenciais locais.
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5. O sistema gera a sessão de acesso e redireciona para a página de dashboard.

Fluxo Alternativo (2): Login via Google

1. No passo 2 do Fluxo Principal, o usuário seleciona a opção “Entrar com Google”.

2. O sistema redireciona o usuário para a autenticação do provedor externo.

3. O sistema recebe o token de confirmação do Google.

4. O sistema valida o token e identifica a conta do usuário.

5. O fluxo retorna ao passo 5 do Fluxo Principal.

Fluxo Alternativo (3): Credenciais Inválidas

1. No passo 3 do Fluxo Principal, o usuário insere e-mail ou senha incorretos.

2. O sistema tenta validar as credenciais.

3. O sistema identifica que as credenciais são inválidas.

4. O sistema exibe a mensagem: “E-mail ou senha inválidos.”.

5. O sistema retorna ao passo 2 do Fluxo Principal.

UC03: Gerar Token de API

Ator Principal: Usuário

Descrição: Permitir que um usuário crie token para realizar a integração com o

sistema de observabilidade.

Pré-condição: O usuário deve possuir sessão ativa no sistema.

Pós-condição: Token gerado.

Fluxo Principal:
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1. O usuário acessa a página de“Tokens de API” nas configurações.

2. O sistema lista os tokens ativos.

3. O usuário seleciona “Gerar Novo Token” e define um nome para identificação.

4. O sistema gera um novo Bearer Token e o exibe uma única vez.

5. O usuário copia e armazena o token em local seguro.

UC04: Enviar Requisição

Ator Principal: Sistema Cliente

Descrição: Permitir que um sistema cliente envie requisições para uma API de

LLM através do sistema.

Pré-condição: O sistema cliente deve possuir um token de API do sistema e ter

ele integrado a sua requisição.

Pós-condição: O sistema cliente recebeu a resposta de seu prompt.

Fluxo Principal:

1. O sistema cliente envia uma requisição para o endpoint do sistema usando o

SDK do seu provedor de LLM.

2. O sistema intercepta a chamada e verifica se existe token do sistema ativo no

cabeçalho da chamada.

3. O sistema verifica se no banco de dados não existe uma requisição bem sucedida

que contenha o mesmo prompt e modelo.

4. O sistema enfileira a requisição em um job interno para processamento.

5. O worker processa o job, repassando a chamada à API oficial LLM.

6. O sistema recebe a resposta do provedor de LLM.
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7. O sistema calcula o custo baseado nos tokens do LLM trafegados e persiste os

logs de auditoria e as métricas de latência.

8. O sistema retorna a resposta ao cliente no formato JavaScript Object Notation

(JSON) exato esperado pelo SDK.

Fluxo Alternativo (3): Existe Cache para a Requisição

1. Se existir requisição anterior bem sucedida que possui prompt e modelo idênticos,

o sistema busca a resposta que ela teve e retorna para a requisição atual.

Fluxo Alternativo (5): Falha e Retentativa

1. Se a API do LLM falhar, o sistema aplica a estratégia de Backoff Exponencial

e retenta a operação até 3 vezes.

2. Se a falha persistir após as tentativas, o sistema registra o erro definitivo e

retorna o código do erro ao cliente.

UC05: Visualizar Detalhes de uma Interação

Ator Principal: Usuário

Descrição: Permitir que um usuários visualize a requisição e resposta integral

de uma interação com LLM.

Pré-condição: O usuário deve estar autenticado no sistema, e ter consumido

um token de API.

Pós-condição: O usuário visualiza o conteúdo completo da requisição e resposta.

Fluxo Principal:

1. O usuário acessa a página de histórico.

2. O sistema exibe a lista de todas as interações que o usuário teve com uma API

de LLM em que usou o token do sistema.
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3. O usuário encontra a interação desejada

4. O usuário clica no botão de ações da interação que direciona para a página de

detalhes.

5. O usuário é direcionado para a página de detalhes da interação.

UC06: Promover Usuário a Administrador

Ator Principal: Administrador

Descrição: Permitir que um administrador promova um usuário a administrador.

Pré-condição: O administrador deve estar autenticado no sistema.

Pós-condição: Um usuário recebe privilégios se tornando um novo administrador.

Fluxo Principal:

1. O administrador acessa o painel “Usuários”.

2. O sistema lista todos os usuários cadastrados na plataforma.

3. O administrador seleciona um usuário e clica no botão de editar.

4. o administrador edita as configurações de perfil do usuário elevando seus

privilégios para administrador

5. O sistema aplica a alteração solicitada e atualiza as configurações do usuário.

3.3.5 Modelagem de Dados

A modelagem de dados desempenha, um papel fundamental na arquitetura deste

sistema de observabilidade, sendo responsável por traduzir as necessidades abstratas

de auditoria, custos e governança em um esquema lógico coerente. A natureza crítica

dos dados processados envolvem desde credenciais de segurança e controle de acesso
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até o conteúdo sensível de prompts e respostas de LLMs,o modelo foi projetado para

assegurar a atomicidade das transações e a consistência dos relacionamentos.

Figura 3.1: Diagrama Entidade-Relacionamento do Sistema

A entidade central desta modelagem é a tabela users, ela é a raiz de integridade

referencial do sistema, armazenando de forma segura as credenciais de acesso e os

dados de perfil. Para garantir a governança e a segregação de funções, esta entidade

relaciona-se diretamente com a tabela roles, que define a hierarquia de permissões

baseada em papéis, distinguindo administradores de usuários comuns. Ainda neste

contexto de segurança, a entidade reset_password_tokens suporta os fluxos de
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recuperação de conta, armazenando hashes temporários para permitir a redefinição

de senhas sem intervenção administrativa.

A modelagem prevê ainda uma separação clara entre o acesso humano e o acesso

de máquina. Para isso, a entidade auth_access_tokens gerencia as chaves de

integração geradas pelos usuários. Diferente de uma sessão de navegador, esses

registros controlam o acesso de aplicações externas, permitindo a revogação granular

de permissões e garantindo que o tráfego de API seja autenticado e rastreável até

sua origem.

O núcleo funcional da plataforma reside na interação entre as entidades de

auditoria e custo. A tabela prompt_requests registra cada interação processada

pelo sistema, estrutura dados críticos como o tempo de latência, a contagem exata

de tokens de entrada e saída, e o conteúdo das mensagens, viabilizando auditorias

forenses e de qualidade. Para suportar a engenharia de custos associada a esses

registros, o sistema utiliza a entidade language_models como um catálogo dinâmico

de parametrização. Esta tabela armazena as configurações e os preços vigentes de cada

modelo, permitindo que o cálculo financeiro das requisições na prompt_requests

seja realizado com base em dados atualizáveis.



Capítulo 4

Observator

Este capítulo detalha o processo de construção e a implementação técnica da

plataforma de observabilidade de LLMs, conforme a arquitetura e os requisitos

definidos no Capítulo 3. A solução foi implementada como uma aplicação web

completa, focada em modularidade, segurança e desempenho.

4.1 Tecnologias Utilizadas

A materialização da arquitetura de referência proposta no capítulo anterior exigiu

a seleção criteriosa de uma pilha tecnológica visando garantir a manutenibilidade, a

segurança de tipos e a escalabilidade. A implementação fundamentou-se no ecossis-

tema NodeJs, adotando o TypeScript como linguagem unificadora para assegurar a

integridade e robustez do código em todas as camadas da aplicação.

Optou-se por uma abordagem arquitetural de monolito modular, integrando um

back-end estruturado e coeso com uma interface reativa moderna. Esta estratégia

visa reduzir a complexidade operacional, mantendo, contudo, a separação lógica

de responsabilidades. A seguir, são detalhadas as decisões de engenharia e as

ferramentas selecionadas para compor cada subsistema, justificando sua adoção

frente às alternativas de mercado.
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4.1.1 AdonisJS

O núcleo da aplicação foi desenvolvido sobre o AdonisJS1, um framework web para

Node.js que adota a premissa TypeScript-first. Sua arquitetura adere estritamente

ao padrão Model-View-Controller (MVC), oferecendo uma estrutura de diretórios

opinativa e organizada, além de um ambiente de desenvolvimento integrado com

suporte a Hot Module Replacement (HMR) para o código de back-end.

A escolha desta tecnologia fundamentou-se em sua filosofia batteries included.

Diferentemente de micro-frameworks como Express2 que exigem a montagem manual

de componentes de terceiros, o AdonisJS fornece nativamente um ecossistema coeso

e robusto. Esta abordagem foi decisiva para acelerar o ciclo de desenvolvimento, pois

provê soluções integradas e testadas para os desafios centrais da plataforma.Dentre os

componentes nativos que justificam essa escolha arquitetural, destacam-se o Lucid3

que realiza a modelagem de dados e abstração Structured Query Language (SQL),

Bouncer para o controle de autorização granular, Auth para um gerenciamento seguro

de autenticação e Adonis Jobs para o processamento de de filas.

Para a inicialização da infraestrutura, optou-se pela utilização de um starter kit4

desenvolvido por membro da comunidade Adonis, em detrimento do padrão oficial.

A escolha deste artefato específico justifica-se pela disponibilização de configurações

arquiteturais avançadas pré-configuradas, estendendo as funcionalidades nativas com

uma camada adicional de abstração. Essa decisão estratégica eliminou a necessidade

de configurações triviais iniciais, permitindo foco imediato nas regras de negócio do

gateway.

4.1.1.1 Lucid

O framework AdonisJS oferece flexibilidade na integração com Object-Relational

Mappings (ORMs), esta tecnologia atua como uma camada de abstração responsável

por mapear as tabelas de um banco de dados relacional para classes e objetos
1https : //adonisjs.com/
2https : //expressjs.com/
3https : //lucid.adonisjs.com/docs/introduction
4https : //github.com/filipebraida/adonisjs− starter − kit
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da aplicação, eliminando a necessidade de manipulação direta de instruções SQL

para operações padrão. A arquitetura do framework permite que o desenvolvedor

selecione a biblioteca de sua preferência, com a documentação oficial listando suporte

a alternativas de mercado como Prisma5 e TypeORM6.

Para este projeto, no entanto, optou-se pela utilização do Lucid. Esta decisão

justifica-se pelo fato de a biblioteca já vir pré-configurada na estrutura base do Ado-

nisJS e, crucialmente, por ser desenvolvida pela mesma equipe do framework, o que

minimiza riscos de incompatibilidade e assegura maior estabilidade nas atualizações.

O Lucid destaca-se também por abstrair a complexidade das consultas mantendo o

acesso ao potencial do SQL, oferecendo uma API para abstrair operações avançadas.

Para a implementação desta plataforma, selecionou-se o PostgreSQL como o

Sistema Gerenciador de Banco de Dados (SGBD) devido sua robustez, confiabilidade

e, principalmente, em seu suporte avançado a tipos de dados não-estruturados,

especificamente o tipo JSON Binary (JSONB)

4.1.1.2 Auth

O gerenciamento de identidade foi implementado através do módulo nativo

de Autenticação do AdonisJS. Dada a natureza híbrida da plataforma, que opera

simultaneamente como uma aplicação web interativa e um gateway, foi necessário

orquestrar duas estratégias de autenticação distintas.

• Guard Web: Configurado para proteger a Single-Page Application (SPA), este

guardião utiliza o mecanismo tradicional de sessões baseadas em cookies seguros.

Ele é responsável por manter o estado de login dos administradores e usuários

nas páginas privadas dos sistema.

• Guard API: Configurado especificamente para proteger os endpoints do gateway

de LLM. Este guardião utiliza tokens de acesso opacos, permitindo que

aplicações externas e SDKs se autentiquem de forma programática. Esta
5https : //www.prisma.io/
6https : //typeorm.io/
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estratégia dissocia a autenticação da máquina da sessão do usuário, garantindo

que as integrações não expirem com o fechamento do navegador e possam ser

revogadas individualmente.

4.1.1.3 Bouncer

O controle de acesso baseado em papéis foi implementado por meio do Bouncer, o

módulo oficial de autorização do AdonisJS. Esse modelo de controle define permissões

com base nos papéis atribuídos aos usuários, em vez de associar permissões individu-

almente a cada um. Assim, um usuário herda automaticamente as permissões do seu

papel, como administrador ou usuário comum, tornando o gerenciamento de acessos

mais seguro, escalável e consistente.

O Bouncer fornece uma camada robusta para o gerenciamento dessas permissões,

permitindo a centralização das regras de autorização em policies, que encapsulam

as decisões de segurança sobre quem pode executar determinadas ações no sistema.

Cada policy define métodos que representam ações específicas, como visualizar, criar,

atualizar ou remover, e retorna um valor boolean indicando se o usuário tem ou não

permissão para realizá-las.

4.1.1.4 Adonis Jobs

A interação com LLM caracteriza-se por uma latência intrínseca elevada e variável,

aumentada pela extensão dos prompts e por eventuais congestionamentos de rede.

A execução síncrona dessas operações no fluxo principal da requisição HTTP pode

bloquear o processo do servidor, impedindo o atendimento de novas solicitações e

conduzindo ao esgotamento de recursos. Este cenário configura um clássico pro-

blema do tipo produtor-consumidor, onde a taxa de entrada de requisições supera a

capacidade imediata de processamento, resultando em degradação de desempenho.

Para mitigar esses efeitos e gerenciar operações de longa duração a solução

proposta incorpora um sistema robusto de filas orquestrado pelo pacote Adonis Jobs.

Construído sobre a biblioteca de sistema de filas BullMQ7, o pacote fornece uma
7https : //bullmq.io/
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integração limpa e idiomática dessa tecnologia ao ecossistema AdonisJS, utilizando o

Redis8 para armazenamento e gerenciamento das filas.

A adoção deste mecanismo foi determinante para a resiliência e escalabilidade

do gateway. Ao delegar o processamento intensivo a workers dedicados, reduz-se

drasticamente a carga sobre o servidor web principal. A persistência e orquestração

dessas tarefas são suportadas pelo Redis, que fornece um canal de comunicação de

baixa latência e alta vazão, requisito crítico para ambientes de alto volume de tráfego.

Em termos de implementação, o job encapsula toda a lógica da tarefa: executa

a chamada ao provedor de LLM, coleta métricas de telemetria, latência, contagem

de tokens e conteúdo, e estrutura a resposta. O controlador, por sua vez, atua

apenas como despachante, submetendo a tarefa à fila e aguardando a resolução do

processamento para retornar a resposta ao cliente. Em cenários de erro, o job captura

o contexto da falha, garantindo a rastreabilidade completa da operação.

Embora o sistema mantenha uma interface síncrona para o cliente, o ganho

em escalabilidade horizontal é significativo. A arquitetura permite que os workers

operem de forma independente, possibilitando a adição dinâmica de novas instâncias

de processamento conforme a demanda aumenta. Isso permite distribuir a carga

de trabalho entre múltiplas máquinas, assegurando a absorção eficiente de picos de

tráfego com eficiência de recursos.

A robustez operacional é reforçada pelo suporte nativo a política de retentativa.

Falhas transitórias, como instabilidades de rede ou timeouts do provedor, são tratadas

automaticamente através do reprocessamento do job. Para evitar a saturação do

serviço externo em momentos de instabilidade, aplica-se a estratégia de exponential

backoff, que aumenta progressivamente o intervalo entre as tentativas. Isso transforma

o tratamento de erros em um processo controlado e determinístico.

Em síntese, este modelo materializa a solução para o problema produtor-consumidor:

o servidor HTTP atua como produtor ágil, enfileirando demandas, enquanto os wor-

kers atuam como consumidores resilientes, processando a carga conforme a capacidade
8https : //redis.io/
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disponível. Esse desacoplamento arquitetural é o pilar que garante o equilíbrio de

carga, a tolerância a falhas e a manutenção dos níveis de serviço mesmo sob condições

adversas.

4.1.2 Padrão Arquitetural: AI Gateway

Sobre a fundação tecnológica do AdonisJS e do sistema de filas, o núcleo da

aplicação foi desenhado para materializar o padrão arquitetural de AI Gateway.

Conceitualmente, um AI Gateway atua como um ponto único de entrada e controle

entre as aplicações clientes e os modelos fundacionais, abstraindo a complexidade de

múltiplas APIs e centralizando políticas de tráfego e auditoria. A implementação

deste componente no Observator foi projetada para operar como um middleware

de alta performance, interceptando requisições para injetar observabilidade sem

adicionar latência significativa.

Para garantir a compatibilidade com sistemas legados que já possuem integração

via SDK com provedores de LLMs, o gateway implementa o padrão de projeto

adapter. Para o escopo desta implementação, o desenvolvimento foi direcionado

especificamente para o suporte a API Gemini. Desta forma, a interface exposta

mimetiza estritamente o contrato de dados esperado pelo SDK oficial deste provedor.

Isso permite que a plataforma atue como um componente de substituição direta: a

aplicação cliente envia a requisição formatada para o LLM, o gateway a intercepta,

processa a auditoria e devolve a resposta no formato exato que o SDK espera,

tornando a camada de observabilidade transparente para o código consumidor.

4.1.3 Arquitetura de Projeto e Front-end

A organização do código-fonte foi estruturada visando a manutenibilidade a longo

prazo e a escalabilidade modular. Para tal, adotou-se uma estrutura de monorepo,

gerenciada pelo gerenciador de pacotes PNPM9 e orquestrada pela ferramenta de build

system Turborepo10. Esta estratégia permite o controle centralizado de dependências,
9https : //pnpm.io/

10https : //turborepo.com/
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otimização do tempo de compilação através de armazenamento em cache remoto e a

segregação clara de responsabilidades, a estrutura de diretórios reflete essa divisão

lógica.

• apps/web: Abriga a aplicação principal, contendo a lógica de negócio e as

camadas de apresentação.

• packages/ui: Contém o design system proprietário, isolado como uma biblio-

teca interna de componentes visuais reutilizáveis.

Esta separação física favorece a padronização da interface. A aplicação principal

consome o pacote de User Interface (UI) como uma dependência, garantindo que

elementos gráficos, estilizados uniformemente via TailwindCSS11 e componentes

base shadcn/ui, mantenham a consistência visual e evitem a duplicação de código

Cascading Style Sheets (CSS).

A arquitetura da interface é definida pela integração de três tecnologias funda-

mentais: (i) React12 que é utilizado como biblioteca de renderização, permitindo a

construção de interfaces reativas complexas, essenciais para os painéis de analytics

e tabelas de dados do sistema. (ii) o Inertia13 atuando como protocolo de ligação

entre o back-end e o front-end. Ele permite que os controladores do servidor rende-

rizem componentes React diretamente, injetando dados via props. Isso viabiliza a

experiência de usuário de uma SPA sem a sobrecarga arquitetural de desenvolver e

manter uma aplicação apartada exclusivamente para o front-end. (iii) Vite14 que é

empregado como ferramenta de empacotamento. Por utilizar módulos ES nativos

e suportar HMR, o Vite acelera significativamente o ciclo de desenvolvimento e

feedback visual.

O resultado é uma arquitetura de monolito modular robusta, que combina a

simplicidade de implantação de uma aplicação tradicional com a interatividade

moderna de uma SPA baseada em componentes.
11https : //tailwindcss.com/
12https : //react.dev/
13https : //inertiajs.com/
14https : //vite.dev/
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4.2 Implementação do Observator

Após a definição da arquitetura e das tecnologias, esta seção apresenta a materia-

lização da plataforma Observator. A seguir, são detalhados os principais fluxos de

interação e as interfaces desenvolvidas, evidenciando como os requisitos funcionais

e as regras de negócio foram traduzidos em componentes visuais e mecanismos de

controle. A apresentação segue a jornada típica do usuário, desde o provisionamento

de acesso até a análise avançada de métricas de observabilidade.

4.2.1 Registro, Autenticação e Recuperação

A arquitetura do módulo de gestão de identidade foi projetada para harmonizar

requisitos não funcionais de segurança e usabilidade, abrangendo os ciclos de registro,

autenticação e recuperação de credenciais. Estas funcionalidades formam a barreira de

controle de acesso primária, assegurando que apenas entidades autorizadas interajam

com os recursos protegidos do sistema, garantindo assim a confidencialidade e a

integridade dos dados.

O processo de registro de contas constitui o ponto de entrada para novos usuários.

Nesta etapa, o sistema coleta e processa as credenciais essenciais como e-mail e senha,

além do nome de usário. A implementação da tela de registro incorpora mecanismos

rigorosos de validação de dados de entrada, aplicando regras de negócio que asseguram

a unicidade do identificador e a conformidade com políticas de complexidade de

senha. A figura 4.1 exibe o formulário de registro.
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Figura 4.1: Tela de Cadastro de Usuários

Adicionalmente, visando a eficiência operacional, o sistema implementa uma

estratégia de autenticação implícita pós-registro: após a persistência bem-sucedida

da nova conta, a sessão é estabelecida automaticamente, eliminando a redundância

de um login subsequente. O tratamento de exceções é realizado em tempo real

na camada de apresentação, fornecendo retorno semântico ao usuário em casos de

violação das regras de validação ou conflitos de dados.

A materialização do mecanismo de controle de acesso é visualizada na Figura 4.2,

que exibe a tela de login desenvolvida. O layout reflete a estratégia de autenticação

híbrida adotada na arquitetura, segregando visualmente as credenciais locais do

provedor de autenticação externo.

Esta disposição busca otimizar a usabilidade ao oferecer um caminho de menor

resistência via autenticação social, mitigando a fadiga de senhas sem excluir a opção

tradicional. Após a submissão bem-sucedida nesta tela, o back-end estabelece o token

de sessão, garantindo a persistência segura do estado de autenticação.
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Figura 4.2: Tela de Login

Por fim, o ciclo de gestão de credenciais é completado pelo módulo de recuperação,

projetado para restaurar o acesso em cenários de perda de senha sem comprometer a

segurança da conta. A tela de solicitação, apresentada na Figura 4.3, atua como o

gatilho inicial deste processo.

Arquiteturalmente, o fluxo é desacoplado: a solicitação do usuário dispara um

evento interno que enfileira o envio de um e-mail transacional de forma assíncrona.

Este e-mail contém uma Uniform Resource Locator (URL) assinada com criptografia

que possui tempo de expiração curto. Esta abordagem garante que apenas o detentor

do e-mail possa acessar a tela de redefinição dentro de uma janela temporal restrita,

mitigando riscos de ataques de força bruta ou interceptação de endereços antigos
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Figura 4.3: Tela de Recuperação de Senha

4.2.2 Dashboard

Imediatamente após a autenticação, o sistema apresenta o dashboard, conforme

demonstrado na Figura 4.4. Esta tela constitui o ponto central de observabilidade,

consolidando métricas críticas de consumo e desempenho em uma visão unificada.

A arquitetura de informação foi estruturada hierarquicamente para oferecer diag-

nósticos rápidos. O topo da tela destaca indicadores de desempenho que quantificam

o volume transacional total, o custo financeiro acumulado e a latência média. Na

camada subsequente, a visualização gráfica possibilita a análise de tendências tem-

porais, como a evolução de custos diária e tempo de resposta por requisição, bem

como a avaliação da confiabilidade sistêmica através da proporção entre requisições

bem-sucedidas e falhas.

Adicionalmente, para o perfil com privilégios administrativos, a tela disponibiliza

mecanismos de filtragem granular, essenciais para isolar as métricas de usuários

específicos e subsidiar processos de auditoria detalhada.
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Figura 4.4: Tela de Dashboard

4.2.3 Histórico de Interações

Complementando a visão agregada do dashboard, o histórico de interações oferece

a capacidade de rastreabilidade granular. A tela, ilustrada na Figura 4.5, implementa

uma visualização tabular projetada para a auditoria detalhada de cada interação

com o gateway.

Cada registro na tabela apresenta os metadados essenciais para a identificação e

análise da transação, organizados em dimensões complementares. O sistema exibe o

contexto e o conteúdo da operação, incluindo a data da execução, o modelo utilizado

e um fragmento do prompt para identificação visual rápida. Em termos de telemetria,

são apresentados o status da operação, a latência da resposta e a contagem de tokens.

Por fim, para a análise de eficiência financeira, a tabela detalha o custo exato da

transação e o indicador de origem, cache ou API LLM, permitindo verificar a eficácia

da estratégia de economia de recursos.
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Figura 4.5: Tela de Histórico de Interações

4.2.4 Detalhes da Interação

A partir da tabela de histórico, o usuário pode navegar a até à tela de detalhes

da interação. Esta tela foi projetada para oferecer uma visão completa e granular do

ciclo de vida da interação entre o sistema e o modelo de linguagem.

O componente central desta tela é o visualizador de dados estruturados, que

apresenta os objetos completos de request e response. Este formato permite que

usuários inspecionem cada campo da interação, incluindo parâmetros de configuração,

cabeçalhos de segurança, tempo de execução e metadados técnicos retornados pelo

provedor.

Adicionalmente, a tela processa o JSON bruto para apresentar uma seção dedicada

ao conteúdo da resposta, onde o texto principal produzido pelo LLM é extraído e

renderizado de forma legível. Esta funcionalidade é crítica para a validação semântica,

facilitando a leitura humana sem a poluição visual da sintaxe JSON.

A relevância desta funcionalidade no contexto de observabilidade reside em seu

papel como ferramenta de depuração e análise forense. Ao expor integralmente o

fluxo de comunicação, conforme ilustrado na Figura 4.6, o sistema permite investigar
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a raiz de falhas, comparar comportamentos entre diferentes modelos e auditar o

conteúdo exato trafegado.

Figura 4.6: Tela de Detalhamento de Interação

4.2.5 Painel de Governança de Usuários

Restrito ao perfil de administrador, o módulo de gerenciamento de usuários

implementa os requisitos de controle centralizado sobre o ciclo de vida das identidades.

A tela principal, apresentada na Figura 4.7, organiza a base de usuários em uma

estrutura tabular, expondo metadados críticos como nome, e-mail e nível de privilégio.

Além da opção de listagem de usuários, o sistema integra a este painel o mecanismo

de registro centralizado, detalhado na Figura 4.8. Esta funcionalidade permite o

registro completo de novos usuários, incluindo nome, e-mail, senha e definição

imediata do papel sem a necessidade de cadastro manual pelo próprio utilizador.

Esse processo é estratégico para ambientes corporativos, assegurando que a gestão

de acessos permaneça centralizada e que nenhuma credencial seja gerada sem a

supervisão explícita da administração.
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Figura 4.7: Tela do Painel Administrativo

Figura 4.8: Tela de Registro Centralizado de Contas

A governança é complementada pela tela de edição, que materializa na prática o

modelo RBAC. Conforme ilustrado na Figura 4.9, o administrador tem a capacidade

de modificar os atributos de identidade e o nível de privilégio atribuído ao usuário.

Esta funcionalidade confere dinamismo à gestão de segurança, permitindo o ajuste

de acessos em resposta a mudanças organizacionais. O sistema viabiliza tanto a

elevação de privilégios quanto a restrição de acesso, assegurando que as permissões

permaneçam sempre alinhadas às responsabilidades atuais de cada colaborador.
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Figura 4.9: Tela de Edição de Usuário

4.2.6 Gestão de Conta e Configurações

O módulo de configurações foi projetado sob uma arquitetura de navegação

unificada , compartilhando um layout lateral persistente. Esta decisão de design visa

centralizar as funcionalidades de personalização, segurança e integração, garantindo

uma experiência coesa e reduzindo a carga cognitiva necessária para alternar entre

contextos de gestão da conta.

4.2.6.1 Perfil e Identidade Visual

A tela de configurações de perfil, apresentada na Figura 4.10, permite a gestão

dos dados cadastrais e da identidade visual do usuário. A implementação foca na

autonomia, permitindo a atualização dinâmica de atributos como nome de exibição

e avatar. Essas informações são persistidas no banco de dados e propagadas para

o cabeçalho da aplicação e para os logs de auditoria, garantindo consistência na

identificação do usuário em todo o sistema.
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Figura 4.10: Tela de Configuração de Perfil

4.2.6.2 Segurança e Credenciais

A seção de segurança implementa os controles de redefinição de credenciais.

Conforme ilustrado na Figura 4.11, o formulário impõe regras estritas de validação:

a exigência da senha atual para autorizar a mudança e a aplicação de políticas de

complexidade para a nova senha. Esta funcionalidade é vital para a manutenção da

higiene de segurança da conta.

Figura 4.11: Tela de Alteração de Senha
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4.2.6.3 Gestão de Tokens

Por fim, a área de tokens de API representa o ponto de convergência entre a

tela humana e a automação. Esta tela, exibida na Figura 4.12, instrumentaliza o

requisito de soberania de acesso, permitindo que o usuário gerencie o ciclo de vida

de suas chaves de acesso programático. Essa interface disponibiliza uma listagem

de tokens ativos e ações para a geração de novas chaves e a revogação imediata de

credenciais.

Figura 4.12: Tela do Gerenciamento de Tokens de Acesso à API

É através do token gerado nesta tela que desenvolvedores e sistemas externos

realizam a autenticação junto ao gateway. Para consumir os recursos de um provedor

LLM juntamente com o Observator, a aplicação cliente deve incorporar este segredo

ao cabeçalho HTTP padrão de autorização, conforme demonstrado no exemplo de

requisição abaixo:

Código 4.1: Exemplo de Integração via SDK Google

1 import { GoogleGenAI } from ’@google/genai ’

2

3 const genAI = new GoogleGenAI ({

4 apiKey: ‘${process.env.GOOGLE_API_KEY}‘,

5 httpOptions: {
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6 baseUrl: ‘${process.env.OBSERVATOR_APP_URL}‘,

7 headers: {

8 ’Authorization ’: ‘Bearer ${authTokenGateway}‘,

9 ’x-api -key’: ‘${process.env.GOOGLE_API_KEY}‘,

10 ’targetURL ’: ’https :// generativelanguage.googleapis.com’,

11 },

12 },

13 });

14

15 async function generateContent () {

16 const response = await genAI.models.generateContent ({

17 model: "gemini -2.0-flash -001",

18 contents: "Por que o céu é azul?",

19 });

20 }

21

22 generateContent ();



Capítulo 5

Conclusão

O presente trabalho abordou os desafios emergentes na engenharia de software

voltada para Inteligência Artificial, especificamente no contexto da operacionalização

de LLMs. Partindo da premissa de que a integração direta com provedores de LLMs

introduz riscos de imprevisibilidade de custos e dependência tecnológica, a pesquisa

culminou no desenvolvimento e validação de uma plataforma de observabilidade.

Este capítulo final sintetiza os resultados alcançados, reflete sobre as implicações

arquiteturais da solução proposta e delineia as fronteiras do escopo atual, apontando

caminhos para a evolução contínua do projeto.

5.1 Considerações Finais

A materialização da plataforma Observator demonstrou que a adoção de um

padrão arquitetural de gateway é uma estratégia eficaz para retomar o controle

sobre aplicações baseadas em LLMs. Ao interpor uma camada de infraestrutura

controlada entre o cliente e o provedor, foi possível transformar um processo de

“caixa-preta” em um fluxo transparente e auditável, sem impor complexidade excessiva

ao desenvolvimento.

Do ponto de vista técnico, a implementação validou a robustez da pilha tecnológica

escolhida. O uso do ecossistema Node.js com TypeScript e AdonisJS provou-se
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adequado para lidar com operações de input e output intensivo, enquanto a arquitetura

de processamento baseada em filas garantiu a resiliência necessária para mitigar

a instabilidade inerente às APIs de LLMs. A estratégia de substituição direta,

mimetizando o contrato de interface do SDK oficial, confirmou-se como um diferencial

de usabilidade, reduzindo drasticamente o atrito de integração.

Em termos de negócio e governança, o sistema atingiu os objetivos de soberania

de dados e controle financeiro. A capacidade de persistir prompts e respostas

em infraestrutura própria, aliada ao cálculo preciso de custos por transação e ao

mecanismo de cache, oferece uma alternativa viável e econômica frente às soluções

SaaS proprietárias de mercado, que muitas vezes exigem o envio de dados sensíveis

para terceiros.

Conclui-se, portanto, que a observabilidade não é apenas uma funcionalidade

acessória, mas um requisito não funcional crítico para qualquer sistema que possua

alguma integração com LLMs em produção. A solução apresentada oferece uma

fundação básica para equipes que buscam equilibrar inovação com responsabilidade

operacional.

5.2 Limitações e Trabalhos Futuros

O desenvolvimento de uma plataforma de engenharia de software é um processo

iterativo e contínuo. A validade desta pesquisa reside não apenas nos resultados

alcançados, mas também na delimitação clara de suas fronteiras experimentais.

Esta seção analisa as restrições de escopo assumidas durante a implementação do

protótipo e projeta um roteiro estratégico para a evolução da plataforma, visando

sua maturação para ambientes produtivos de larga escala.

5.2.1 Limitações Atuais

Embora a solução proposta tenha atingido seus objetivos fundamentais, o escopo

deste trabalho apresenta limitações inerentes ao tempo e aos recursos de um projeto

acadêmico. Primeiramente, a implementação atual restringe-se exclusivamente à
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integração com o a API Gemini. Embora a arquitetura tenha sido concebida para ser

extensível, o sistema ainda não suporta nativamente outros provedores com presença

significativa no mercado, como OpenAI1 ou Anthropic2, limitando sua aplicação

imediata em ambientes de múltiplos modelo.

Do ponto de vista da experiência em tempo real, o gateway opera atualmente

apenas no modo de resposta completa, não suportando o retorno de dados via

streaming ou RAG. Essa restrição, decorrente da complexidade de manter conexões

persistentes e gerenciar o fluxo contínuo de dados através da camada de processamento

intermediária, pode impactar a percepção de latência em interfaces de chat que

exigem interatividade imediata.

Além disso, o sistema carece de mecanismos avançados de controle de consumo,

como a gestão automatizada de orçamentos, que permitiria bloquear o uso de uma

chave de API após atingir um teto financeiro mensal, não foi contemplada nesta

versão. Por fim, o mecanismo de cache implementado baseia-se na correspondência

exata do texto, não possuindo capacidades de busca vetorial para realizar cache

semântico, o que reduz a eficiência em cenários onde perguntas distintas possuem a

mesma intenção semântica.

5.2.2 Trabalhos Futuros

Como roteiro para a evolução da plataforma, a prioridade reside na expansão da

arquitetura para um modelo agnóstico e multi-provedor. A generalização do padrão

adapter é fundamental para suportar a normalização de requisições e respostas de

outros ecossistemas líderes, como OpenAI e Anthropic. Essa evolução permitiria

que as aplicações clientes alternassem entre diferentes modelos de linguagem dinami-

camente, sem a necessidade de refatoração de código, concretizando a visão de um

gateway universal.

Em paralelo, busca-se elevar a eficiência e a inteligência do sistema através da

integração de bancos de dados vetoriais. A implementação de cache semântico,
1https : //openai.com/
2https : //www.anthropic.com/
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suportada pelo armazenamento de embeddings dos prompts, permitiria reutilizar

respostas baseadas na similaridade de intenção e não apenas na correspondência

textual exata. Adicionalmente, propõe-se a criação de um módulo de avaliação

automatizada LLM-as-a-Judge, onde um modelo auxiliar auditaria a qualidade,

toxicidade e relevância das respostas geradas em um pipeline de pós-processamento,

automatizando a garantia de qualidade.

Por fim, para consolidar a governança operacional, sugere-se o desenvolvimento de

um sistema de alertas em tempo real. A implementação de canais de notificação como

webhooks ou e-mail que disparem alertas imediatos quando limites orçamentários ou

taxas de erro críticas forem atingidos transformaria a plataforma de uma ferramenta

passiva de análise histórica em um mecanismo ativo de controle e resposta a incidentes.
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