
UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO

INSTITUTO MULTIDISCIPLINAR

GABRIEL MARINHO DE SOUZA

SYLVINO PREVOT DE OLIVEIRA JUNIOR

Benchmark de RAG para Notícias

Esportivas

Prof. Filipe Braida do Carmo, D.Sc.

Orientador

Nova Iguaçu, Dezembro de 2025

Benchmark de RAG para Notícias Esportivas

Gabriel Marinho de Souza

Sylvino Prevot de Oliveira Junior

Projeto Final de Curso submetido ao Departamento de Ciência da Computação do

Instituto Multidisciplinar da Universidade Federal Rural do Rio de Janeiro como

parte dos requisitos necessários para obtenção do grau de Bacharel em Ciência da

Computação.

Apresentado por:

Gabriel Marinho de Souza

Sylvino Prevot de Oliveira Junior

Aprovado por:

Prof. Filipe Braida do Carmo, D.Sc.

Prof. Leandro Guimarães Marques Alvim, D.Sc.

Prof. Ygor de Mello Canalli, D.Sc.

NOVA IGUAÇU, RJ - BRASIL

Dezembro de 2025

Agradecimentos

Gabriel Marinho de Souza

Agradeço, primeiramente, aos gigantes que me apoiaram nos ombros: meus pais.

Ao meu pai, Sergio, por ter me apresentado aos computadores e me ensinado a

curiosidade. A minha mãe, Denize, por ter me ensinado a força real da persistência.

Vocês me deram suporte para ser quem eu sou e para que eu pudesse ver mais longe.

Por tudo isso, serei eternamente grato.

Agradeço também a todos os que trilharam esse caminho ao meu lado, vocês

permitiram que esse trajeto fosse mais leve. Em especial, agradeço a Khiara, Sylvino,

Marcos e Allan por terem me ensinado e apoiado, tanto nessa caminhada quanto na

vida. Obrigado por todas as risadas, conversas, trabalhos, noites de estudos e saídas.

Eu não teria conseguido sem vocês.

Agradeço ao professor Filipe Braida pela orientação e ensinamentos ao longo de

todo o curso. Suas conversas foram de extrema importância para minha trajetória.

Você é um grande exemplo de profissional para mim.

Agradeço a todos os professores do Departamento de Ciência da Computação da

UFRRJ pelos ensinamentos e oportunidades.

Agradeço também a todos que fizeram parte da minha caminhada mas não estão

mais ao meu lado. Vocês também ajudaram a construir quem sou hoje, e por isso,

sou grato.

Por fim, agradeço a mim por, diante de tantas adversidades, dos caminhos ter

mantido o certo. Você pode ir além.

i

Sylvino Prevot de Oliveira Junior

Primeiramente, agradeço a Deus, pois sem Ele nada seria possível. Agradeço

pela maior bênção que me concedeu, antes mesmo que eu pudesse respirar: minha

mãe, Giseli. Que ela saiba que todo o seu esforço na minha criação valeu a pena.

Foi ela quem me ensinou tudo o que sei e, principalmente, me deu coragem para

aprender o que ela não poderia ensinar. Obrigado pelo cuidado e proteção, mas,

como diz o ditado: um navio no porto é seguro, mas não é para isso que os navios

foram construídos.

Agradeço ao meu pai. Tenho orgulho de carregar seu nome e ser lembrado por

isso; obrigado pela motivação e ensinamentos. No mesmo sentido, estendo minha

gratidão ao meu padrasto, Carlos Alberto, por todo o esforço, respeito e carinho com

que me tratou durante todos esses anos.

À minha namorada, Diully Ceni, por ter sido meu refúgio quando mais precisei.

Obrigado por me apresentar a vida sob nova perspectiva, por me ajudar a crescer e

por me tornar alguém mais forte.

Agradeço àqueles que estiveram ao meu lado, não me permitindo desistir e me

ajudando a descobrir quem sou: Allan, Breno, Gabriel Mota, João Pedro Ottoni,

Jorge, Mariana e Raiane. Um agradecimento especial ao Gabriel Marinho, que

dividiu comigo as angústias e vitórias na produção deste trabalho, reforçando ainda

mais a nossa amizade.

Meus sinceros agradecimentos ao professor Filipe Braida e aos demais docentes

do Departamento de Ciência da Computação da UFRRJ, pela orientação e pelos

ensinamentos fundamentais para minha formação.

Por fim, agradeço a mim mesmo e a tudo que me formou, por ter perseverado

através de todas as noites insones e, mesmo nos ambientes mais adversos, ter escolhido

o caminho da educação. Encerro com a certeza de que a jornada me transformou:

“Cuidado; pois agora eu já não sinto medo, e por isso sou poderoso.”

ii

RESUMO

Benchmark de RAG para Notícias Esportivas

Gabriel Marinho de Souza e Sylvino Prevot de Oliveira Junior

Dezembro/2025

Orientador: Filipe Braida do Carmo, D.Sc.

Os Large Language Models (LLM) apresentam limitações intrínsecas, como co-

nhecimento estático e alucinações, que se tornam críticas em domínios factuais e

dinâmicos, como o de notícias esportivas. O Retrieval-Augmented Generation (RAG)

surge para conectar LLM a bases de conhecimento atualizadas, mas a literatura ca-

rece de um benchmark sistemático que compare as arquiteturas RAG neste contexto

específico. Este trabalho propõe e executa um benchmark para essa avaliação. Este

trabalho contribui com: (1) um conjunto de dados personalizado, gerado com notícias

esportivas recentes (setembro de 2025) para evitar contaminação, abrangendo testes

factuais, de integração e de rejeição negativa; (2) o desenvolvimento e avaliação de

quatro arquiteturas: Baseline, Naive RAG, Advanced RAG e Graph RAG; e (3) uma

análise aprofundada via framework de avaliação que combina métricas de pipeline

(RAGAS) e avaliação semântica (LLM Judge) para dissecar os trade-offs de cada

abordagem. Os resultados demonstram que o Baseline (LLM puro) é factualmente

obsoleto, obtendo uma qualidade factual média de 1.4413 (em 5), mas com segu-

rança perfeita (5.0). O Naive RAG, por sua vez, oferece o maior ganho factual

(2.7981), mas exibe falhas de segurança (4.5333). O Graph RAG, mais complexo,

apresentou desempenho factual fraco (2.0952), sugerindo que a modelagem complexa

pode introduzir pontos de falha na recuperação. O Advanced RAG, utilizando

sumarização e reordenação (re-ranking), obteve desempenho factual comparável ao

Naive RAG (2.7175), mas foi a única arquitetura RAG a alcançar segurança perfeita

(5.0). Conclui-se que otimizações de pipeline, como a reordenação, oferecem o melhor

equilíbrio entre desempenho factual, complexidade e confiabilidade para este domínio.

iii

ABSTRACT

Benchmark de RAG para Notícias Esportivas

Gabriel Marinho de Souza and Sylvino Prevot de Oliveira Junior

Dezembro/2025

Advisor: Filipe Braida do Carmo, D.Sc.

Large Language Models (LLM) possess intrinsic limitations, such as static kno-

wledge and hallucinations, which are critical in factual and dynamic domains like

sports news. RAG emerges to connect LLM to up-to-date knowledge bases, yet the

literature lacks a systematic benchmark comparing RAG architectures in this specific

context. This work proposes and executes a benchmark for this evaluation. This study

contributes: (1) a custom dataset generated from recent sports news (September 2025)

to prevent contamination, covering factual, information integration, and negative

rejection tests; (2) the development and evaluation of four architectures: Baseline,

Naive RAG, Advanced RAG, and Graph RAG; and (3) an in-depth analysis using

an evaluation framework that combines pipeline metrics (RAGAS) and semantic

evaluation (LLM Judge) to dissect the trade-offs of each approach. Results show that

the Baseline (pure LLM) is factually obsolete, achieving an average factual quality

score of 1.4413 (out of 5), despite perfect safety (5.0). The Naive RAG offers the

highest factual gain (2.7981) but exhibits safety failures (4.5333). The more complex

Graph RAG showed weak factual performance (2.0952), suggesting that modeling

complexity can introduce failure points in retrieval. The Advanced RAG, utilizing

summarization and re-ranking, achieved factual performance (2.7175) comparable

to Naive RAG but was the only RAG architecture to achieve perfect safety (5.0). It

is concluded that pipeline optimizations, such as re-ranking, offer the best balance

between factual performance, complexity, and reliability for this domain.

iv

Lista de Figuras

Figura 2.1: Representação esquemática do fluxo de funcionamento de um

sistema RAG, destacando as etapas fundamentais de Indexação,

Recuperação e Geração. Fonte: Adaptado de Gao et al. (2024). . 8

Figura 2.2: Fluxograma do paradigma Advanced RAG, evidenciando a adição

de técnicas de otimização nas etapas de pré-recuperação e pós-

recuperação. Fonte: Adaptado de Gao et al. (2024). 10

Figura 2.3: Arquitetura do paradigma Modular RAG, ilustrando a flexibilidade

de composição entre módulos independentes como roteamento,

reescrita e ranqueamento. Fonte: Adaptado de Gao et al. (2024). 11

Figura 4.1: Quantidade total de registros no conjunto de dados gerado a partir

da captura de notícias de um portal de esportes 27

Figura 4.2: Quantidade total de registros no conjunto de dados. 27

Figura 4.3: Histograma da distribuição do número de caracteres por notícia

coletada no corpus base . 28

Figura 4.4: Histograma da distribuição do número de caracteres das perguntas

geradas sinteticamente . 28

Figura 4.5: Histograma da distribuição do número de caracteres das respostas

de referência (ground-truth) . 29

Figura 4.6: Frequência absoluta de notícias classificadas por modalidade es-

portiva identificada no conjunto de dados. 30

v

Figura 4.7: Frequência de menções aos principais clubes de futebol nos textos

das notícias do corpus. 31

Figura 4.8: Nuvem de palavras gerada a partir da frequência de termos pre-

sentes nos títulos das notícias coletadas. 32

Figura 4.9: Média e desvio padrão da pontuação de cada resposta de Accuracy

(1-5) atribuída pelo LLM Judge para cada arquitetura no cenário

factual. 39

Figura 4.10: Contagem de ocorrências de cada nota de Accuracy (1 a 5) atri-

buída pelo LLM Judge para cada arquitetura no cenário factual.

Este gráfico evidencia a distribuição real das pontuações. 40

Figura 4.11: Comparativo da média e desvio padrão das métricas de saúde do

pipeline (Faithfulness, Precision e Recall) entre as arquiteturas de

RAG. 41

Figura 4.12: Gráfico de radar comparando o perfil de desempenho das arqui-

teturas nas três métricas de pipeline: Faithfulness, Precision e

Recall. 41

Figura 4.13: Análise de trade-off entre o Desempenho Factual vs. Segurança

das arquiteturas. 44

vi

Lista de Tabelas

Tabela 4.1: Esquema do Grafo de Conhecimento 37

Tabela 4.2: Resultados para Perguntas Factuais 39

Tabela 4.3: Resultados para Testes de Rejeição Negativa (N=15) 42

vii

Lista de Abreviaturas e Siglas

LLM Large Language Models

RAG Retrieval-Augmented Generation

RGB Retrieval-Augmented Generation Benchmark

HNSW Hierarchical Navigable Small Worlds

JSON JavaScript Object Notation

HTTP HyperText Transfer Protocol

HTML HyperText Markup Language

HTML HyperText Markup Language

URL Uniform Resource Locator

viii

Sumário

Agradecimentos i

Resumo iii

Abstract iv

Lista de Figuras v

Lista de Tabelas vii

Lista de Abreviaturas e Siglas viii

1 Introdução 1

1.1 Objetivo . 2

1.2 Resumo dos Resultados . 2

1.3 Organização do Trabalho . 3

2 Retrieval-Augmented Generation 4

2.1 Large Language Models . 4

2.2 Retrieval-Augmented Generation . 6

ix

3 Proposta 12

3.1 Domínio de Notícias Esportivas . 13

3.2 Trabalhos Relacionados . 14

3.3 Conjunto de Dados de Avaliação . 15

3.4 Arquiteturas de RAG Selecionadas 16

3.5 Metodologia de Avaliação . 18

4 Metodologia Experimental e Resultados 22

4.1 Conjunto de Dados . 23

4.1.1 Construção do Conjunto de Dados 23

4.1.2 Análise do Conjunto de Dados 26

4.2 Desenvolvimento das Arquiteturas RAG 30

4.2.1 Baseline: LLM sem Recuperação de Contexto 32

4.2.2 Naive RAG: retrieve-then-read 33

4.2.3 Advanced RAG: Sumarização e Reordenação 34

4.2.4 Graph RAG: Modelagem com Grafo de Conhecimento 36

4.3 Resultados e Análise . 38

4.3.1 Desempenho Factual (Perguntas Simples e Multi-Contexto) . . 38

4.3.2 Rejeição Negativa (Segurança) 42

4.3.3 Análise dos Resultados . 43

5 Conclusão 45

5.1 Considerações finais . 45

5.2 Limitações e trabalhos futuros . 46

x

Referências 48

xi

Capítulo 1

Introdução

Os Large Language Models (LLMs) revolucionaram o processamento de linguagem

natural, demonstrando uma capacidade sem precedentes de compreender e gerar

textos com fluidez humana (RADFORD et al., 2019). Esses modelos, pré-treinados

em vastos conjuntos de dados, internalizam padrões complexos, gramática e um

amplo conhecimento de mundo, o que contribuiu para sua rápida adoção em diversas

aplicações. Contudo, essa arquitetura possui limitações intrínsecas, como as alucina-

ções e a fronteira de conhecimento delimitado pela data de treinamento, o que se

traduz em baixo desempenho para alguns tipos de aplicação (HUANG et al., 2025).

Essas limitações tornam-se particularmente críticas em domínios de alta volatili-

dade, como o de notícias esportivas. Nesses cenários, a informação torna-se obsoleta

rapidamente, e a dependência do conhecimento paramétrico do modelo leva a respos-

tas desatualizadas ou factualmente incorretas. Como solução para essas deficiências,

a arquitetura de RAG emergiu como uma abordagem proeminente (LEWIS et al.,

2021). O RAG aprimora os LLMs ao conectá-los a uma base de conhecimento

externa e dinâmica, permitindo que o modelo baseie suas respostas em informações

verificáveis e recentes no momento da inferência (LEWIS et al., 2021).

Contudo, a literatura atual, embora explore RAG em domínios onde o conhe-

cimento não se torna obsoleto com o tempo, carece de uma análise comparativa

sistemática que avalie a eficácia dessas diferentes arquiteturas em domínios de alta

1.1 Objetivo 2

volatilidade, como o jornalismo esportivo. A escolha da arquitetura ideal para esse

tipo de domínio é uma questão em aberto, sem um benchmark claro que meça o

equilíbrio entre a complexidade de desenvolvimento e o ganho prático em factualidade

e segurança.

1.1 Objetivo

O objetivo central deste trabalho é propor e executar um benchmark para a

avaliação sistemática e comparativa de arquiteturas RAG no domínio de notícias

esportivas. Diante da inexistência de conjuntos de dados disponíveis para essa

finalidade, este estudo foca em dois objetivos principais: (1) a construção de um

conjunto de dados personalizado a partir de notícias recentes, garantindo que a

avaliação não sofra de contaminação de conhecimento; e (2) o desenvolvimento e

avaliação comparativa de três arquiteturas RAG distintas: Naive, Advanced e Graph

RAG.

Utilizando uma metodologia de avaliação que combina métricas de pipeline com

uma avaliação semântica da qualidade da resposta por um LLM Judge, este trabalho

analisa a relação entre o desempenho factual e a segurança contra alucinações

existente nessas arquiteturas. O resultado é uma análise quantitativa que identifica

qual abordagem oferece o melhor equilíbrio entre complexidade, factualidade e

robustez para o domínio proposto.

1.2 Resumo dos Resultados

A análise dos dados revela que o Naive RAG apresentou a maior eficácia nas

métricas de qualidade da resposta, atingindo médias de 2.7981 em Accuracy e 0.6337

em Faithfulness. No entanto, ao examinarmos os componentes de recuperação,

o Advanced RAG demonstrou superioridade, com médias de 0.9079 para Context

Precision e 0.7682 para Context Recall. Além disso, no critério de segurança via

rejeição negativa, esta abordagem e o Baseline LLM obtiveram desempenho ideal,

1.3 Organização do Trabalho 3

registrando média de 5.0000. Em contraste com os demais, o Graph RAG obteve os

resultados mais baixos em todas as dimensões avaliadas.

1.3 Organização do Trabalho

Este trabalho está estruturado em cinco capítulos. O Capítulo 1, esta introdu-

ção, contextualiza o problema do conhecimento estático dos LLMs e apresenta os

objetivos da pesquisa. O Capítulo 2, Retrieval-Augmented Generation, estabelece

a fundamentação teórica, detalhando a arquitetura dos LLMs, suas limitações e o

funcionamento das arquiteturas RAG. O Capítulo 3, Proposta, descreve o benchmark

desenvolvido, detalhando a escolha do domínio, os trabalhos relacionados, a mode-

lagem das arquiteturas RAG selecionadas e o framework de avaliação proposto. O

Capítulo 4, Metodologia Experimental e Resultados, detalha a construção do conjunto

de dados, o desenvolvimento das arquiteturas e apresenta a análise quantitativa dos

dados coletados no benchmark. Finalmente, o Capítulo 5, Conclusão, sumariza as

descobertas, discute as limitações do estudo e propõe trabalhos futuros.

Capítulo 2

Retrieval-Augmented Generation

Este capítulo estabelece a base teórica necessária para a compreensão da proposta

deste trabalho. A exposição inicia-se com uma análise dos LLMs, detalhando seu

funcionamento probabilístico e as limitações intrínsecas como alucinações e o conheci-

mento estático, que motivam esta pesquisa. Em seguida, é apresentada a arquitetura

de RAG como uma solução proeminente para essas deficiências, detalhando seus

diferentes níveis de complexidade.

2.1 Large Language Models

Estruturalmente, esses modelos se dividem em três arquiteturas principais:

encoder-only, decoder-only e encoder-decoder (VASWANI et al., 2023). Modelos

encoder-only, como o BERT, são otimizados para tarefas de compreensão de texto,

como análise de sentimento (DEVLIN et al., 2019). A arquitetura decoder-only, po-

pularizada pela série GPT, especializa-se na geração de texto sequencial (RADFORD

et al., 2019). Por fim, os modelos encoder-decoder, como o T5, são projetados para

tarefas de transformação de uma sequência de entrada em outra, sendo ideais para

tradução automática (RAFFEL et al., 2023).

A entrada e a saída de um LLM é uma sequência de sub-palavras, chamadas

de tokens. O processo de inferência desse tipo de modelo é fundamentalmente

2.1 Large Language Models 5

probabilístico. Sua tarefa consiste em, a partir de uma sequência de tokens, chamada

de prompt, calcular o token mais provável que deveria ser gerado e repetir esse

processo para formar uma sequência de tokens. Essa abordagem se difere de um

processo de raciocínio lógico ou semântico, em vez disso, baseia-se inteiramente nos

padrões identificados durante a fase de treinamento em um vasto corpus de dados

textuais. (VASWANI et al., 2023)

Nos modelos generativos, i.e., decoder-only e encoder-decoder, a geração de texto

é um processo autorregressivo. A cada passo, o modelo processa os tokens anteriores

e, ao final, sua camada linear de saída calcula um vetor de pontuações brutas, logits,

para todo o vocabulário (VASWANI et al., 2023). Após a conversão dos logits

em uma distribuição de probabilidades, aplicam-se estratégias de amostragem para

restringir o conjunto de tokens candidatos.

As técnicas mais comuns de restrição do conjunto de tokens incluem Top-K

sampling, que considera apenas os K tokens mais prováveis, e Top-P, i.e. Nucleus

sampling, que seleciona o menor conjunto de tokens cuja probabilidade acumulada

ultrapassa um limiar P. Um token é então aleatoriamente selecionado desse subcon-

junto filtrado e anexado à sequência. A aleatoriedade é controlada por parâmetros

como a temperatura, que ajusta a distribuição dos logits antes da amostragem.

(HOLTZMAN et al., 2020)

Uma limitação fundamental dos LLMs, decorrente de sua natureza conexionista,

é que seu processo de geração de tokens não se baseia em dedução lógica, mas sim

em reconhecimento de padrões estatísticos. Essa característica é a causa principal

de sua falha mais notória, as alucinações, fenômeno onde o modelo gera conteúdo

plausível, porém falso. Este problema é classificado em duas categorias principais:

Factuality Hallucination, que é a discrepância entre o conteúdo gerado e fatos

verificáveis do mundo real, e Faithfulness Hallucination, que ocorre quando a resposta

contradiz o contexto fornecido pelo usuário ou as próprias instruções. Essas falhas

também ocorrem porque o conhecimento do modelo, derivado de seu treinamento,

pode ser falho, enviesado ou simplesmente desatualizado, levando à incorporação de

informações incorretas com aparente confiança. (HUANG et al., 2025)

2.2 Retrieval-Augmented Generation 6

Adicionalmente, o conhecimento de um LLM é estático, limitado aos dados de seu

treinamento, o que o impede de acessar informações novas ou de domínios específicos.

Para superar essa deficiência, duas estratégias principais podem ser empregadas: o

fine-tuning, que envolve o retreinamento do modelo para internalizar novos dados, e o

Retrieval-Augmented Generation (RAG), que consiste na utilização de conhecimento

externo no momento da inferência.

O fine-tuning especializa o modelo através do retreinamento em um corpus de

domínio específico (ANISUZZAMAN et al., 2025). Contudo, tal processo se torna

mais computacionalmente custoso que o RAG para domínios dinâmicos, que deman-

dam atualizações constantes de conhecimento (GAO et al., 2024). Considerando

que o domínio de notícias esportivas, foco deste trabalho, é caracterizado por um

fluxo contínuo de novas informações, o retreinamento frequente do modelo se mostra

inviável. Diante dessa limitação, a abordagem de RAG se mostra mais adequada

para os objetivos propostos.

2.2 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) é uma abordagem projetada para mi-

tigar os problemas de alucinações e conhecimento estático nos LLMs. Proposto

originalmente por Lewis et al. (2021), o RAG foi apresentado como uma abordagem

de fine-tuning de propósito geral, projetada para combinar a memória paramétrica

com uma memória não-paramétrica.

A arquitetura combinava um recuperador pré-treinado com um gerador seq2seq

pré-treinado. A memória não-paramétrica consistia em um índice vetorial da Wiki-

pedia. Crucialmente, o sistema era treinado de forma end-to-end, permitindo que o

recuperador aprendesse a buscar documentos que fossem úteis especificamente para

o gerador produzir a resposta correta. (LEWIS et al., 2021)

Neste trabalho, duas formulações para essa arquitetura híbrida foram descritas.

Formalmente, o modelo recebe uma sequência de entrada x e utiliza documentos

recuperados z, tratados como variável latente, para gerar a sequência de saída y,

2.2 Retrieval-Augmented Generation 7

composta por N tokens. (LEWIS et al., 2021)

A primeira formulação, RAG-Sequence, recupera os documentos uma única vez

e utiliza o mesmo conjunto de informações latentes para gerar toda a sequência de

resposta. A probabilidade da sequência final p(y|x) para este modelo é definida

pela Equação 2.1, onde pη(z|x) é a probabilidade do recuperador e pθ a do gerador.

(LEWIS et al., 2021)

A segunda, RAG-Token, segue o mesmo fluxo, mas permite que o modelo bus-

que documentos diferentes a cada token gerado (yi), possibilitando a síntese de

informações de múltiplas fontes, conforme a Equação 2.2. (LEWIS et al., 2021)

pRAG-Sequence(y|x) ≈
∑

z∈top-k(p(·|x))

pη(z|x)
N∏
i=1

pθ(yi|x, z, y1:i−1) (2.1)

pRAG-Token(y|x) ≈
N∏
i=1

∑
z∈top-k(p(·|x))

pη(z|x)pθ(yi|x, z, y1:i−1) (2.2)

Embora o RAG tenha sido originalmente proposto como um método de fine-tuning

(LEWIS et al., 2021), com o surgimento de modelos com capacidade de realizar

aprendizado por contexto, i.e., In-Context Learning, o RAG se tornou um pipeline

de inferência. Tanto o recuperador quanto o gerador são usados sem retreinamento,

e o conhecimento é fornecido dinamicamente ao LLM através do prompt.

Ao fundamentar a geração de texto em fontes de dados externas e verificáveis, esta

abordagem de RAG aumenta a factualidade das respostas e permite que o modelo

utilize conhecimento além de seu treinamento original. Conforme representado na

Figura 2.1, o processo se divide em três etapas: indexação, recuperação e geração.

(GAO et al., 2024)

A fase de indexação é o processo offline de preparação da base de conhecimento.

Inicialmente, os documentos brutos são carregados e segmentados em trechos menores

e gerenciáveis, conhecidos como chunks. Essa segmentação é crucial para garantir que

as unidades de informação recuperadas sejam concisas e semanticamente autocontidas.

2.2 Retrieval-Augmented Generation 8

Figura 2.1: Representação esquemática do fluxo de funcionamento de um sistema
RAG, destacando as etapas fundamentais de Indexação, Recuperação e Geração.
Fonte: Adaptado de Gao et al. (2024).

Cada chunk é então processado por um modelo de embedding, que o converte em

um vetor numérico de alta dimensão. Esses vetores são armazenados em um índice,

comumente uma base de dados vetorial, que é otimizada para realizar buscas por

similaridade em alta velocidade, permitindo a localização eficiente de informações

relevantes posteriormente. (GAO et al., 2024)

A etapa de recuperação ocorre em tempo de inferência e é acionada pela consulta

do usuário. A pergunta é primeiramente transformada em um vetor utilizando o

mesmo modelo de embedding da fase de indexação, garantindo que a comparação seja

feita no mesmo espaço vetorial. Este vetor de consulta é então utilizado para buscar

no índice os chunks mais relevantes. A busca tipicamente se baseia em algoritmos de

2.2 Retrieval-Augmented Generation 9

similaridade de cosseno ou outras métricas de distância, que identificam os vetores de

texto cujos conteúdos são semanticamente mais próximos da pergunta. O resultado

desta fase é um conjunto de k trechos de texto recuperados, que constituem o contexto

a ser fornecido ao LLM. (GAO et al., 2024)

Finalmente, na fase de geração, o sistema combina as informações recuperadas

com a pergunta original do usuário. Os chunks de texto relevantes são formatados

e inseridos em um prompt, que instrui o LLM a formular sua resposta com base

no contexto fornecido. Este processo, conhecido como grounding ou ancoragem,

orienta o modelo a atuar como um sintetizador de informação, em vez de depender

exclusivamente de seu conhecimento parametrizado. O resultado é uma resposta que

não apenas tende a ser mais precisa e factual, mas que também pode citar as fontes

utilizadas, aumentando a transparência e a confiabilidade do sistema. (GAO et al.,

2024)

No trabalho de Gao et al. (2024) é proposta uma taxonomia que classifica as

arquiteturas RAG em três categorias: Naive RAG, Advanced RAG e Modular RAG.

A distinção entre elas se concentra em duas fases principais do processo: a de

indexação e a de recuperação. A fase de indexação envolve o pré-processamento e

armazenamento de trechos de documentos, i.e., chunks, na base de conhecimento.

Subsequentemente, na fase de recuperação, os chunks mais relevantes para a consulta

do usuário são selecionados para servirem de contexto na geração da resposta pelo

modelo de linguagem. A seguir são delimitadas as diferenças entre as categorias.

O Naive RAG consiste na arquitetura mais simples e representa o paradigma

fundamental de retrieve-then-read (MA et al., 2023). Esse tipo abrange qualquer

arquitetura que siga um fluxo sequencial direto, sem otimizações. O processo inicia-

se com a indexação, onde os documentos são segmentados em chunks de texto,

vetorizados através de um modelo de embedding e armazenados em um banco de

dados vetorial. Na etapa de recuperação, a pergunta do usuário é igualmente

vetorizada e utilizada para realizar uma busca por similaridade, recuperando os

chunks mais relevantes do banco de dados. Por fim, esses chunks são inseridos de

maneira organizada ao prompt original para fornecer o contexto necessário ao LLM,

2.2 Retrieval-Augmented Generation 10

que então gera a resposta final.

Figura 2.2: Fluxograma do paradigma Advanced RAG, evidenciando a adição de
técnicas de otimização nas etapas de pré-recuperação e pós-recuperação. Fonte:
Adaptado de Gao et al. (2024).

O Advanced RAG engloba técnicas que adicionam etapas de processamento pre-

retrieval e post-retrieval, i.e., antes e após da busca, respectivamente, para aprimorar

a qualidade do contexto fornecido ao LLM, como na Figura 2.2. As estratégias

de pre-retrieval focam em otimizar tanto a consulta do usuário quanto os dados

indexados, incluindo técnicas como query rewriting (MA et al., 2023), que consiste

na reescrita de perguntas para maior clareza ou otimização da própria indexação com

metadados. Já as estratégias de post-retrieval atuam sobre os chunks já recuperados,

aplicando métodos como re-ranking (NOGUEIRA; CHO, 2019), que reordena os

chunks recuperados, para priorizar a informação mais relevante ou a compressão do

contexto para eliminar ruídos e adequá-lo à janela de contexto do LLM.

O Modular RAG é o mais poderoso e flexível dos três, pois substitui o pipeline

linear por uma arquitetura adaptativa composta por múltiplos módulos especializados

e intercambiáveis (GAO et al., 2024). Essa abordagem permite a adição de novas

capacidades e a execução de fluxos não lineares e mais dinâmicos. Em vez de

uma sequência fixa, o Modular RAG pode incorporar componentes como o query

router, que consiste em um roteador de perguntas que decide qual fonte de dados

2.2 Retrieval-Augmented Generation 11

Figura 2.3: Arquitetura do paradigma Modular RAG, ilustrando a flexibilidade de
composição entre módulos independentes como roteamento, reescrita e ranqueamento.
Fonte: Adaptado de Gao et al. (2024).

consultar ou se a busca é necessária, e até mesmo módulos que executam outros

tipos de RAG de forma iterativa. Analisando a arquitetura da Figura 2.3, por

exemplo, uma única consulta poderia ser inicialmente avaliada por um roteador, que

a direciona para o módulo de busca. Os resultados poderiam então ser enviados a

um módulo de reescrita para maior clareza, antes de serem finalmente organizados

por um ranqueador que otimiza a relevância para a geração final. Técnicas como

o Self-RAG (ASAI et al., 2023), onde o próprio LLM aprende a decidir quando e

o que recuperar, são exemplos dessa arquitetura, que permite um raciocínio mais

sofisticado e adaptado à complexidade de cada consulta.

Capítulo 3

Proposta

Este capítulo apresenta uma proposta de benchmark para a avaliação sistemática

de diferentes arquiteturas de RAG. A motivação reside na vulnerabilidade dos

LLMs em domínios em que o conhecimento é de natureza volátil, como o de notícias

esportivas, onde seu conhecimento estático rapidamente se torna obsoleto. Para

enfrentar este desafio, o experimento deste trabalho consiste em utilizar notícias

recentes do portal Globo Esporte1 como uma base de conhecimento externa e

dinâmica, avaliando qual arquitetura RAG se desempenha melhor na tarefa de

consumir essas informações para responder a perguntas factuais.

O objetivo é conduzir uma análise comparativa profunda, fundamentada nos

frameworks Retrieval-Augmented Generation Benchmark (RGB) (CHEN et al., 2023)

e TRACe (FRIEL; BELYI; SANYAL, 2025). Para isso, o trabalho aplica uma

metodologia robusta que combina métricas de pipeline e avaliação semântica, visando

analisar o trade-off entre a complexidade da arquitetura e seu impacto prático no

desempenho factual e na segurança.

As seções subsequentes detalham os pilares desta proposta. A argumentação inicia

com a justificativa para a escolha do domínio de notícias esportivas e a consequente

necessidade de um conjunto de dados personalizado, seguida por uma análise dos

trabalhos relacionados para contextualizar as lacunas existentes. O cerne da proposta
1<https://ge.globo.com/>

https://ge.globo.com/

3.1 Domínio de Notícias Esportivas 13

é então apresentado através da metodologia de construção do conjunto de dados,

da concepção das arquiteturas, Naive RAG, Advanced RAG e Graph RAG, e da

definição do framework de avaliação que será utilizado para analisar os resultados.

3.1 Domínio de Notícias Esportivas

O domínio de notícias esportivas foi selecionado como caso de estudo por encapsu-

lar de forma exemplar os desafios centrais para os LLMs. A informação neste campo

é extremamente volátil, com novas notícias sobre resultados, transferências e análises

de partidas sendo publicados diariamente, tornando o conhecimento obsoleto em

questão de horas. Parte do conhecimento sobre esportes é inerentemente estruturado,

composto por entidades bem definidas, como jogadores, times, competições e os

relacionamentos explícitos que os conectam. Nas notícias, entretanto, essa estrutura

é apresentada em formato não estruturado, o que impõe o desafio de extrair e com-

preender estas conexões densas e interligadas, exigindo um sistema que supere a

fronteira de conhecimento estático dos LLMs.

Mesmo com essas características, a aplicação de RAG no jornalismo esportivo

se mostra uma área de pesquisa com aparente lacuna na literatura. Investigações

existentes tendem a focar em domínios de conhecimento mais estáveis, como fazem

Amugongo et al. (2025) na área da saúde, ou em tarefas de pergunta e resposta de

escopo aberto, como no trabalho de Friel, Belyi e Sanyal (2025). A natureza relacional

dos dados esportivos levanta a questão fundamental de como diferentes arquiteturas

RAG se comportam diante desses desafios. A literatura carece de benchmarks que

comparem sistematicamente as vantagens e desvantagens dessas abordagens em um

cenário tão dinâmico e interconectado.

As arquiteturas de RAG, portanto, surgem como uma solução aparentemente

adequada para este problema, dada a sua capacidade de externalizar a fonte de

conhecimento, tornando-a independente dos parâmetros do LLM e permitindo a sua

atualização contínua sem excessivo custo computacional (SOUDANI; KANOULAS;

HASIBI, 2024). Ao fundamentar a geração em fontes externas e recentes, o RAG

3.2 Trabalhos Relacionados 14

pode, em tese, fornecer respostas factuais sobre eventos que ocorreram após o corte

de treinamento do modelo. Antes de propor uma nova metodologia de avaliação, é

imperativo analisar o estado da arte para contextualizar a contribuição deste trabalho

e fundamentar a lacuna previamente identificada. A seção a seguir, portanto, examina

os principais benchmarks e arquiteturas RAG existentes na literatura.

3.2 Trabalhos Relacionados

A validação da eficácia de sistemas RAG tem sido objeto de crescente interesse

acadêmico, resultando na proposição de diversos benchmarks robustos. A revisão da

literatura revelou um foco em duas frentes principais: a criação de metodologias de

avaliação e o desenvolvimento de arquiteturas RAG mais sofisticadas. No entanto, a

aplicação e teste dessas inovações em domínios de conhecimento de alta volatilidade,

como o de notícias, permanecem como uma lacuna significativa.

A fundação para a avaliação moderna de RAG foi estabelecida por trabalhos como

o de Chen et al. (2023), que propôs o RGB. O foco de avaliação do RGB se concentra

na robustez a ruído, rejeição negativa e integração de informação. Entretanto, ele

emprega uma correspondência exata de texto para medir a acurácia, uma abordagem

rígida que pode penalizar respostas semanticamente corretas, mas textualmente

diferentes. Este trabalho se baseia nas capacidades cognitivas definidas pelo RGB,

mas avança ao propor um método de avaliação mais flexível.

Paralelamente ao desenvolvimento de benchmarks, a pesquisa tem explorado

arquiteturas RAG mais autônomas e complexas. Um exemplo notável é o SELF-

RAG, proposto por Asai et al. (2023), um framework que treina o LLM para decidir

por si só quando a recuperação é necessária e para criticar suas próprias gerações

através de tokens de reflexão. A proposta do SELF-RAG evidencia a fronteira da

pesquisa, focada em sistemas com maior capacidade de autocrítica.

O framework TRACe, proposto por Friel, Belyi e Sanyal (2025), oferece uma

metodologia centrada no pipeline, com o objetivo de medir o desempenho do retriever,

i.e, recuperador, e do gerador. As métricas Context Utilization e Adherence medem,

3.3 Conjunto de Dados de Avaliação 15

respectivamente, a eficiência e a factualidade do gerador, enquanto Context Relevance

avalia a qualidade do recuperador. Em conjunto, essas métricas permitem um

diagnóstico granular sobre a saúde mecânica do processo, identificando se as falhas

se originam em uma recuperação deficiente ou em uma geração defeituosa.

A importância de validar a confiabilidade de RAG em domínios especializados é

reforçada pela revisão sistemática de Amugongo et al. (2025), na qual se investiga a

aplicação de RAG no setor da saúde. O estudo consolida os desafios e as oportunidades

do uso de RAG em um campo onde a factualidade é crítica, alinhando-se diretamente

à motivação deste trabalho. Embora focado na área de saúde, o artigo destaca a

necessidade universal de benchmarks robustos para validar a aplicação de RAG em

cenários onde a precisão da informação é primordial.

Em suma, a análise dos trabalhos relacionados revela que, embora existam

avaliações de propósito geral e arquiteturas avançadas, estas concentram-se predo-

minantemente em domínios de conhecimento estático. A literatura atual carece de

estudos empíricos dedicados a avaliar e comparar o desempenho de arquiteturas

RAG no contexto de domínios de alta volatilidade, como o de notícias. Esta lacuna

impede a compreensão de como diferentes estratégias de recuperação se comportam

quando a factualidade da informação é sensível à temporalidade. Para viabilizar essa

análise, o primeiro passo é a construção de um novo conjunto de dados de avaliação

que simule tais desafios.

3.3 Conjunto de Dados de Avaliação

A validade experimental de sistemas RAG depende estritamente da garantia

de que o modelo não resolva as questões por simples memorização. Uma barreira

significativa para essa validação é a contaminação de dados: como os LLMs são

pré-treinados com vastos corpora coletados da internet, é frequente que os próprios

conjuntos de dados de avaliação públicos já tenham sido ingeridos pelo modelo

durante seu treinamento. Nesses casos, o modelo pode acertar a resposta recorrendo

à sua memória paramétrica, mascarando a ineficiência do sistema de recuperação

3.4 Arquiteturas de RAG Selecionadas 16

(CHEN et al., 2023). Para mitigar esse risco e isolar a capacidade de fundamentação

do sistema, torna-se mandatório a curadoria de um conjunto de dados inédito.

No contexto de notícias esportivas, isso é alcançado selecionando eventos recentes,

ocorridos comprovadamente após a data de corte do conhecimento dos modelos

avaliados (FRIEL; BELYI; SANYAL, 2025).

Com base nesta premissa, foi necessário construir um conjunto de dados para

criar um ambiente de avaliação controlado. Esse conjunto é estruturado como uma

coleção de artigos de notícias, coletadas em 30 de setembro de 2025, onde cada artigo

funciona como uma fonte de conhecimento autocontida. Associado a cada um, é

gerado um conjunto de pares de pergunta e resposta de referência. A lógica de geração

define que cada pergunta simples seja formulada sinteticamente a partir do texto do

artigo correspondente, ou, no caso das perguntas multi-contexto, de múltiplos artigos.

Respectivamente, a resposta de referência é produzida utilizando exclusivamente

o conteúdo do mesmo artigo ou dos múltiplos artigos usados para geração. Este

princípio de ancoragem factual é crucial, pois assegura que a avaliação seja feita

contra uma verdade fundamental estritamente contida na base de conhecimento e

cria um cenário ideal para testar a precisão da recuperação e a fidelidade da geração

a partir de uma fonte bem definida (GAO et al., 2024).

Com este conjunto de dados estabelecido como a base para o benchmark, o

próximo passo é detalhar as arquiteturas que serão submetidas à avaliação, cada uma

representando uma abordagem distinta para a modelagem da base de conhecimento

e para a recuperação da informação.

3.4 Arquiteturas de RAG Selecionadas

Para conduzir esta avaliação, o desempenho de um LLM ao responder as perguntas

sem acesso à base de conhecimento estabelece o desempenho mínimo esperado, o

Baseline. A partir daí, três arquiteturas RAG foram desenvolvidas para avaliar o

ganho incremental de cada abordagem. A primeira, retrieve-then-read, serve como

a arquitetura fundamental. A segunda, Advanced RAG, utilizando sumarização e

3.4 Arquiteturas de RAG Selecionadas 17

reordenação, introduz otimizações no pipeline através de etapas de sumarização e

reordenação. Por fim, a terceira, Graph RAG, representa uma mudança paradigmática

ao modelar o conhecimento em uma estrutura de grafo híbrida.

A abordagem retrieve-then-read representa a instância mais fundamental do

paradigma RAG, o Naive RAG e representa a arquitetura mais simples. Nessa

abordagem, a base de conhecimento é concebida como uma coleção não estruturada

de chunks, extraídos diretamente do conjunto de dados. A lógica de recuperação é

um processo linear: a pergunta do usuário é transformada em uma representação

vetorial e utilizada para realizar uma busca por similaridade. Os n chunks mais

semanticamente similares são recuperados e concatenados para formar o contexto

que será fornecido ao LLM. (GAO et al., 2024)

O modelo de Advanced RAG investiga o impacto de otimizações no pipeline de

recuperação, introduzindo etapas de pré e pós-processamento. Na fase pre-retrieval,

este trabalho modela o uso da sumarização para criar representações mais densas

dos documentos antes da busca, visando aprimorar a identificação inicial das fontes

mais relevantes. Subsequentemente, na fase post-retrieval, é utilizado um modelo

reranker. Este modelo reavalia os chunks inicialmente recuperados com um critério

de relevância mais sofisticado, com o objetivo de refinar a seleção e priorizar as

informações mais pertinentes no contexto final. (GAO et al., 2024)

A arquitetura Graph RAG representa uma mudança paradigmática na modelagem

da base de conhecimento, substituindo a representação linear de texto por uma

estrutura de grafo de conhecimento híbrida. Nesta abordagem, cada notícia extraída

é instanciada no grafo como um nó Documento central. O conteúdo textual é então

decomposto em nós Chunk, menores e vetorizados, onde cada um é explicitamente

ligado ao seu nó Documento de origem por meio de um relacionamento. Coexistindo

com essa camada textual, há uma camada de conhecimento estruturado: nós Entidade

e os relacionamentos explícitos que os conectam, ambos extraídos do texto completo

por um LLM. Essa estrutura híbrida é interconectada por Relações, que ligam os

Chunks às Entidades que eles citam. O processo de recuperação explora essa topologia,

combinando a busca vetorial inicial nos Chunks com uma expansão contextual através

3.5 Metodologia de Avaliação 18

do grafo para coletar um subgrafo de conhecimento rico, que é então sintetizado em

linguagem natural para servir de contexto ao LLM. (GAO et al., 2024)

3.5 Metodologia de Avaliação

A complexidade inerente aos sistemas RAG, que combinam recuperação de

informação e geração de linguagem, torna a avaliação uma tarefa multifacetada.

Segundo Friel, Belyi e Sanyal (2025), não há um conjunto de métricas universalmente

aceito, exigindo uma abordagem que meça tanto a qualidade da resposta final quanto

a eficácia das etapas intermediárias. Esses desafios são enfrentados na literatura por

diferentes focos.

O framework TRACe oferece uma metodologia centrada no pipeline, com o

objetivo de dissecar e medir a eficácia do recuperador (retriever) e do gerador.

Métricas como Context Relevance avaliam a qualidade do recuperador, enquanto

Context Utilization e Adherence medem, respectivamente, a eficiência e a factualidade

do gerador. Em conjunto, essas métricas permitem um diagnóstico granular sobre

a saúde do processo, identificando se as falhas se originam em uma recuperação

deficiente ou em uma geração defeituosa. (FRIEL; BELYI; SANYAL, 2025)

Em contraste, o framework RGB, proposto por Chen et al. (2023), foca na

avaliação das capacidades cognitivas do LLM ao ser apresentado com um contexto

aumentado. Esta metodologia testa habilidades de raciocínio em quatro diferentes

focos. O Noise Robustness consiste na capacidade de ignorar informação distrativa.

A Negative Rejection é a habilidade de se recusar a responder quando a informação

é insuficiente. A Information Integration é a capacidade de sintetizar uma resposta

a partir de múltiplos documentos. Por fim, a Counterfactual Robustness avalia a

capacidade do modelo de identificar e não ser enganado por informações incorretas,

i.e., contrafactuais presentes no contexto recuperado. Embora o RGB seja abrangente,

este trabalho foca especificamente nos eixos de Negative Rejection, Information

Integration e Noise Robustness pois são os mais alinhados aos desafios do domínio

proposto. A Counterfactual Robustness não é do escopo desta avaliação, uma

3.5 Metodologia de Avaliação 19

vez que o domínio de notícias esportivas não apresenta cenários onde informações

deliberadamente incorretas sejam o problema central.

Com base na análise desses frameworks de avaliação de RAG, este trabalho

propõe uma avaliação híbrida que sintetiza e aprimora as abordagens existentes,

justificando-se por duas diferenciações estratégicas. Em contraste com a métrica

de acurácia do RGB, que se baseia em uma correspondência exata de texto, nossa

proposta emprega um LLM Judge, baseado no trabalho de Gu et al. (2025), para uma

avaliação semântica. Esta abordagem, embora computacionalmente mais custosa, é

mais robusta, pois é capaz de reconhecer respostas corretas que são parafraseadas ou

estruturadas de forma diferente da resposta de referência. Além disso, enquanto o

framework TRACe oferece um diagnóstico quantitativo essencial para a saúde do

pipeline, ele não capta a qualidade geral da resposta. O LLM Judge complementa

essa análise julgando simultaneamente critérios complexos como completude e a

integração de informação, o que oferece uma visão multifacetada da performance que

se aproxima do julgamento humano.

A partir dessa abordagem de avaliação híbrida, este trabalho adota um framework

de análise multifacetado. A metodologia foca na análise granular de cada métrica de

forma independente, permitindo uma compreensão mais profunda dos trade-offs de

cada arquitetura.

A avaliação do desempenho de cada sistema utiliza a média aritmética das

pontuações de cada resposta dada pelo modelo para aferir o desempenho geral e o

desvio padrão para medir a consistência da arquitetura, apresentando os resultados

no formato padrão (média ± desvio padrão). Um desvio baixo é interpretado

como um comportamento estável e previsível, enquanto um desvio alto indica que o

desempenho variou significativamente entre as perguntas. Além disso, a análise é

dividida de acordo com as duas responsabilidades distintas de um sistema RAG, que

não podem ser avaliadas da mesma maneira: o desempenho factual e a segurança

contra alucinação.

Para medir o desempenho factual, aplicado às perguntas simples e de multi-

contexto, foi utilizado o conjunto completo de métricas de pipeline, Context Precision

3.5 Metodologia de Avaliação 20

e Context Recall, e de geração, Accuracy e Faithfulness. As métricas Faithfulness

e Context Relevance seguem as definições formais do trabalho de Es et al. (2025),

focado em avaliação sem referência, definido nas Equações 3.1 e 3.2. Já o Context

Recall avalia a capacidade do recuperador em encontrar a informação contida no

gabarito (ground-truth) e é definido na Equação 3.4. A Accuracy é definida pela

Equação 3.3.

O Faithfulness (F) avalia se a resposta é fundamentada no contexto, evitando

alucinações. Dado um conjunto de afirmações S extraídas da resposta gerada, calcula-

se a razão daquelas (V) que podem ser inferidas a partir do contexto recuperado

c(q):

F =
|V |
|S|

, onde V = {s ∈ S | c(q) |= s}. (3.1)

A Context Relevance, utilizada como métrica de precisão, penaliza a inclusão de

informações redundantes no contexto. Ela é calculada pela razão entre o número de

sentenças relevantes extraídas (Sext) e o total de sentenças no contexto (c(q)):

Context Relevance =
|Sext|

|Total de Sentenças em c(q)|
. (3.2)

Para as métricas que dependem de referência, a Accuracy é definida por uma

função de avaliação fjudge, executada por um LLM Judge que atribui uma nota

discreta à qualidade da resposta y em relação ao gabarito ygt:

Accuracy(y, ygt) = fjudge(q, y, ygt) ∈ {1, . . . , 5}. (3.3)

O Context Recall verifica a proporção de sentenças da resposta de referência

S(ygt) que podem ser atribuídas ao contexto recuperado C:

Context Recall =
|{s ∈ S(ygt) | C |= s}|

|S(ygt)|
. (3.4)

Para medir a segurança contra alucinação, aplicada aos testes de rejeição negativa,

são desconsideradas as métricas de saúde de pipeline, i.e, Faithfulness, Precision e

3.5 Metodologia de Avaliação 21

Recall. Nesses casos, um sistema ideal deve identificar o contexto como irrelevante e

se recusar a responder, o que faria com que essas métricas pontuassem próximo de

zero. Portanto, a avaliação de segurança é definida exclusivamente pela média da

pontuação de Accuracy. Isso é possível pelo fato de que o LLM gerador é instruído a

fornecer uma resposta de recusa padrão, e o LLM Judge foi instruído a atribuir nota

5 para essa recusa correta.

Esta abordagem analítica, ao decompor a avaliação nos eixos de qualidade factual,

saúde do pipeline e segurança, permite uma análise dos trade-offs inerentes a cada

arquitetura. A metodologia busca expor de forma transparente como um sistema

pode, por exemplo, otimizar o Context Recall em detrimento do Context Precision,

ou como uma arquitetura com alta acurácia factual em perguntas diretas pode falhar

no pilar de segurança. A análise permite, assim, uma comparação direta mas de

como cada sistema equilibra essas diferentes demandas.

Capítulo 4

Metodologia Experimental e

Resultados

Este capítulo detalha a execução do benchmark proposto, apresentando a meto-

dologia de construção do conjunto de dados, o framework de avaliação e o desenvol-

vimento das arquiteturas. O objetivo central é conduzir uma avaliação sistemática

de arquiteturas de RAG em um domínio de natureza altamente dinâmica, utilizando

o corpus de notícias esportivas desenvolvido para este fim.1

A exposição inicia-se com o detalhamento do pipeline de construção do conjunto

de dados, incluindo as fases de coleta de dados, geração sintética de perguntas e a

análise de sua composição. Em seguida, o capítulo descreve o desenvolvimento e a

arquitetura de cada sistema avaliado: o Baseline, o Naive RAG, o Advanced RAG e o

Graph RAG. Sequencialmente, é formalizada a metodologia de avaliação, explicando

as métricas quantitativas de pipeline e a abordagem qualitativa do LLM Judge.

Finalmente, o capítulo apresenta e analisa os resultados detalhados da avaliação.

Os dados coletados para os cenários de teste são consolidados, permitindo uma

comparação quantitativa do desempenho factual, perguntas simples e multi-contexto,

e da capacidade de rejeição negativa de cada abordagem.
1O código-fonte completo de todas as arquiteturas e o pipeline de dados está disponível em:

<https://github.com/sylvininholol/RAGBenchmark>.

https://github.com/sylvininholol/RAGBenchmark

4.1 Conjunto de Dados 23

4.1 Conjunto de Dados

Um pré-requisito fundamental para a avaliação de sistemas RAG é a utilização

de um conjunto de dados que não sofra da contaminação de conhecimento, i.e., cujas

informações não estejam presentes nos dados de treinamento dos LLMs avaliados.

Conforme destacado por Chen et al. (2023), o uso de informações recentes é uma

estratégia eficaz para mitigar esse viés, garantindo que o desempenho do modelo

reflita sua capacidade de raciocinar sobre o contexto fornecido, em vez de recorrer ao

seu conhecimento paramétrico. Para este fim, foi desenvolvido um pipeline de dados

automatizado para construir um conjunto de dados focado no domínio de notícias

esportivas.

4.1.1 Construção do Conjunto de Dados

A fonte de dados selecionada foi o portal Globo Esporte2, um veículo de alta

relevância e com um fluxo contínuo de publicações. Devido à ausência de uma API

pública, a extração de dados foi realizada por meio de web crawling, em um processo

multifásico realizado no dia 30 de setembro de 2025.

Inicialmente, foi desenvolvida uma rotina em Python utilizando a biblioteca

Selenium para automatizar a navegação na página principal, que depende da interação

do usuário para carregar seu conteúdo dinamicamente. Esta rotina simulou o

comportamento de um usuário, executando rolagens de página sucessivas até o final

do feed. Quando a simples rolagem não resultava em novo conteúdo, o elemento

“Veja mais” era localizado e acionado, permitindo o carregamento de notícias mais

antigas. Este ciclo de rolagem e clique foi repetido até que o elemento “Veja mais”

não estivesse mais disponível ou o limite pré-definido de 25 interações fosse atingido,

assegurando a captura de um volume substancial de notícias.

Uma vez que a página principal estava integralmente carregada, seu código-fonte

HyperText Markup Language (HTML) foi extraído e analisado para identificar e

coletar o Uniform Resource Locator (URL) de cada notícia individual. Em uma
2https://ge.globo.com/

https://ge.globo.com/

4.1 Conjunto de Dados 24

segunda etapa, para obter o conteúdo completo de cada artigo, a rotina iterou sobre

a lista de URLs coletadas. Requisições HyperText Transfer Protocol (HTTP) foram

executadas para cada URL, utilizando um cabeçalho User-Agent para simular um

navegador padrão. Esta abordagem, que não depende da renderização de JavaScript,

mostrou-se mais eficiente para a coleta em massa dos textos dos artigos.

Finalmente, realizou-se a análise sintática da estrutura DOM de cada página

para isolar o conteúdo textual relevante. Utilizando seletores baseados na marcação

semântica do HTML, identificando, por exemplo, tags de parágrafo contidas nos

elementos principais do artigo, foi possível segregar o texto da notícia de elementos

ruidosos, como menus de navegação, publicidade e rodapés. Os dados estruturados

resultantes, que incluem título, URL e texto limpo, foram armazenados em uma

tabela em um banco de dados relacional, formando o corpus base utilizado neste

trabalho.

O processo resultou na coleta de 210 notícias distintas. Este volume amostral foi

dimensionado para garantir a diversidade temática necessária à validação, mantendo-

se dentro da viabilidade financeira para a execução massiva das avaliações via LLMs

proprietários. Os registros foram armazenados em uma tabela de um banco de dados

PostgreSQL, formando o corpus base para a geração dos dados de avaliação. Com o

corpus de notícias estabelecido, a etapa seguinte consistiu na geração de um conjunto

de avaliação diversificado, projetado para testar diferentes capacidades dos sistemas

RAG. O processo foi dividido em três fases de geração de perguntas e respostas

utilizando o modelo de linguagem GPT-3.5-turbo.

A primeira fase focou na criação de perguntas simples cuja resposta está contida

integralmente em um único documento. Para cada uma das 210 notícias do corpus, o

modelo foi instruído a gerar três perguntas relevantes que pudessem ser respondidas

apenas pelo conteúdo do texto-fonte. Subsequentemente, para cada pergunta, uma

resposta de referência foi produzida utilizando exclusivamente o conteúdo do mesmo

artigo. Este subconjunto de dados visa criar um ambiente controlado para avaliar o

desempenho fundamental de cada arquitetura, que são a precisão da recuperação e a

fidelidade da geração.

4.1 Conjunto de Dados 25

A segunda fase foi projetada para criar cenários de teste mais complexos, avaliando

a capacidade de integração de informações. O processo primeiramente, usando um

LLM, classifica as notícias por entidades, nesse caso, times de futebol, e, em seguida,

cria 30 pares de documentos distintos. Para cada par, o modelo foi instruído com

um prompt específico para gerar uma única pergunta que só pudesse ser respondida

forçando a síntese e a combinação de informações de ambos os textos.

Formalmente, baseando-se no conceito de Information Integration proposto por

Chen et al. (2023), define-se o cenário de necessidade conjunta. Seja um par de

documentos D = {di, dj} que compartilham um assunto em comum, a pergunta q

e a resposta de referência y são geradas de tal forma que a resposta seja dedutível

apenas pela união dos contextos, satisfazendo a condição definida pela Equação 4.1:

(di ∪ dj) |= y ∧ di ̸|= y ∧ dj ̸|= y. (4.1)

Dessa forma, garante-se que o sistema RAG deve obrigatoriamente recuperar e

sintetizar informações de ambas as fontes para atingir a resposta correta, validando

a capacidade de integração.

Finalmente, uma terceira fase foi executada para compor o subconjunto de testes

de rejeição negativa. O objetivo desta etapa foi gerar perguntas que, embora factíveis

dentro do domínio esportivo, não pudessem ser respondidas pelo corpus de notícias.

Para isso, o modelo foi instruído a gerar 15 perguntas plausíveis cujas respostas

não estivessem contidas nos tópicos fornecidos, extraídas da base de conhecimento,

por exemplo, sobre um evento fictício, uma estatística inventada ou um jogador

não mencionado. Esta abordagem visa avaliar a capacidade do sistema RAG de se

abster de responder quando a informação necessária não está disponível no contexto

recuperado.

Como consolidação das etapas de coleta e geração sintética, o artefato final desen-

volvido para este trabalho constitui um conjunto de dados heterogêneo, estruturado

para avaliar diferentes dimensões de competência do sistema. A composição definitiva

do conjunto de dados apresenta-se da seguinte forma:

4.1 Conjunto de Dados 26

1. Corpus de Conhecimento: 210 artigos de notícias esportivas na íntegra,

constituindo a base documental para a recuperação;

2. Perguntas de Contexto Único: 630 pares de pergunta-resposta fundamen-

tados em documentos específicos, destinados à avaliação de recuperação direta

e precisão local;

3. Perguntas Multicontexto: 30 pares de pergunta-resposta que exigem a

agregação de informações de diferentes documentos, destinados à avaliação da

capacidade de síntese e recuperação complexa;

4. Amostras Negativas: 15 perguntas adversariais sem resposta na base docu-

mental, projetadas para testar os limites de segurança e a rejeição de alucina-

ções.

A infraestrutura de dados foi projetada para suportar buscas de similaridade

semântica de alto desempenho. Foi utilizado o PostgreSQL com a extensão pgvector3,

que habilita o armazenamento e a consulta de dados vetoriais. O processo de

vetorização foi conduzido utilizando o modelo text-embedding-3-small da OpenAI4.

Foram gerados embeddings para todas as perguntas e respostas de referência, que

foram armazenados em tabelas dedicadas. Para otimizar as operações de busca,

foram criados índices Hierarchical Navigable Small Worlds (HNSW) sobre as colunas

de vetores, o que reduz drasticamente a latência das consultas. Feita a construção e

geração do conjunto de dados, a subseção seguinte analisa a composição quantitativa

e qualitativa dos dados resultantes, que servem como base para o benchmark das

arquiteturas RAG.

4.1.2 Análise do Conjunto de Dados

A Figura 4.2 apresenta uma visão quantitativa do conjunto de dados final. O

corpus é composto por 210 notícias distintas. A partir delas, foi gerado o conjunto

de avaliação, totalizando 675 perguntas e 675 respostas de referência. Este conjunto
3<https://github.com/pgvector/pgvector>
4<https://openai.com/>

https://github.com/pgvector/pgvector
https://openai.com/

4.1 Conjunto de Dados 27

é dividido em três categorias, conforme a metodologia de construção: 630 perguntas

simples, 30 perguntas de múltiplo contexto e 15 perguntas de rejeição.

Figura 4.1: Quantidade total de registros no conjunto de dados gerado a partir da
captura de notícias de um portal de esportes

Figura 4.2: Quantidade total de registros no conjunto de dados.

A Figura 4.3 demonstra que a maioria das 210 notícias possui entre 1.000 e 3.000

caracteres. Essa dimensão é suficientemente longa para conter informações factuais

ricas, mas também justifica a necessidade de segmentação (chunking) implementada

nas arquiteturas RAG.

As Figuras 4.4 e 4.5 mostram que as perguntas são, em sua maioria, curtas e

diretas, com tamanho entre 50 e 150 caracteres, simulando consultas de usuários

reais, enquanto as respostas de referência são concisas e factuais, com tamanho entre

100 e 300 caracteres.

A Figura 4.6 apresenta a distribuição das modalidades esportivas identificadas no

conjunto de dados. A classificação de cada notícia foi realizada de forma automatizada,

utilizando o modelo de linguagem GPT-3.5-turbo como classificador. O modelo

foi instruído a analisar o título de cada artigo e identificar o esporte específico,

escolhendo entre uma lista predefinida de modalidades, como futebol, basquete, tênis

4.1 Conjunto de Dados 28

Figura 4.3: Histograma da distribuição do número de caracteres por notícia coletada
no corpus base

Figura 4.4: Histograma da distribuição do número de caracteres das perguntas
geradas sinteticamente

4.1 Conjunto de Dados 29

Figura 4.5: Histograma da distribuição do número de caracteres das respostas de
referência (ground-truth)

e automobilismo. Embora mais de vinte esportes distintos tenham sido detectados

pelo classificador, o gráfico mostra apenas o Top 6 esportes mais mencionados, seguido

da categoria “Outros”, para tornar a visualização mais clara e informativa. Essa

categoria agrupa as demais modalidades com menos de quatro ocorrências, como

Boxe, Futebol Americano, Vôlei, MMA, Judô, Surfe e Natação, entre outras.

Essa consolidação permite reduzir o ruído visual e destacar a forte predominância

do futebol, que representa a maioria absoluta das notícias coletadas. Essa concentra-

ção é reforçada pela quantidade de notícias que mencionam times, vista na Figura 4.7,

que destaca a proeminência dos clubes de futebol do Rio de Janeiro, com Flamengo

e Botafogo liderando as menções.

Finalmente, a nuvem de palavras gerada a partir dos títulos das notícias, Figura

4.8, serve como uma síntese visual dos tópicos. Termos como “Fluminense”, “Vasco”,

“Botafogo” e nomes de jogadores e competições relevantes, como “Gerson” e “brasilei-

rão”, são centrais, confirmando que o conjunto de dados em sua maioria é composto

por notícias de futebol.

4.2 Desenvolvimento das Arquiteturas RAG 30

Figura 4.6: Frequência absoluta de notícias classificadas por modalidade esportiva
identificada no conjunto de dados.

A análise revela um conjunto de dados com características alinhadas aos objetivos

deste estudo. A alta especialização temática e a natureza factual e recente das notícias,

visíveis na análise de tópicos, criam um cenário de teste focado em informações

de nicho, que provavelmente não integram o conhecimento paramétrico do LLM

sem RAG. Esta condição é metodologicamente fundamental para mitigar o risco de

contaminação de conhecimento, forçando os sistemas RAG a dependerem do contexto

recuperado. Dessa forma, o conjunto de dados viabiliza uma avaliação focada na

capacidade dos sistemas de recuperar e raciocinar sobre informações fornecidas, em

vez de apenas memorizar fatos pré-treinados.

4.2 Desenvolvimento das Arquiteturas RAG

Para a avaliação comparativa proposta neste trabalho, foram desenvolvidas quatro

arquiteturas distintas. A primeira, Baseline, serve como controle experimental

ao utilizar o LLM sem qualquer recuperação de contexto. As outras três são as

arquiteturas Naive RAG, Advanced RAG e Graph RAG.

4.2 Desenvolvimento das Arquiteturas RAG 31

Figura 4.7: Frequência de menções aos principais clubes de futebol nos textos das
notícias do corpus.

Para garantir uma comparação justa e controlada, as arquiteturas foram padroni-

zadas em seu componente de geração textual. Todas as quatro arquiteturas utilizam

o modelo GPT-3.5-turbo da OpenAI para a geração final de respostas, a escolha deste

modelo fundamentou-se em sua relação custo-desempenho favorável, adequando-se

às limitações orçamentárias do projeto sem comprometer a capacidade de raciocínio

necessária para a tarefa. Adicionalmente, as três arquiteturas RAG utilizam o mo-

delo text-embedding-3-small para a criação dos embeddings vetoriais, assegurando

consistência na capacidade de compreensão semântica durante a recuperação.

A estrutura de cada arquitetura foi concebida de forma modular, isolando o com-

ponente de geração de resposta, constante em todas as abordagens, do componente

de recuperação de contexto, que varia entre as arquiteturas RAG ou é omitido no

Baseline. Esta modularidade permite que a estratégia de recuperação, o componente

central que diferencia cada abordagem, seja substituída, modificada ou completa-

mente removida, permitindo uma avaliação isolada do impacto da recuperação de

4.2 Desenvolvimento das Arquiteturas RAG 32

Figura 4.8: Nuvem de palavras gerada a partir da frequência de termos presentes
nos títulos das notícias coletadas.

contexto, mantendo a geração textual constante.

Adicionalmente, o ambiente de execução e as dependências de cada arquitetura,

incluindo seus respectivos bancos de dados, são gerenciados por meio do Docker,

garantindo a reprodutibilidade dos experimentos e o isolamento dos ambientes. A

seguir, são definidas as especificações e os detalhes de implementação de cada uma

das quatro arquiteturas avaliadas neste trabalho, começando pela linha de base

experimental.

4.2.1 Baseline: LLM sem Recuperação de Contexto

Para estabelecer um controle experimental e quantificar o ganho de desempenho

introduzido pelas arquiteturas de RAG, foi testado um LLM sem recuperação de

contexto para servir como linha de base. Esta abordagem representa o ponto

zero de comparação, omitindo intencionalmente todo o processo de recuperação de

informação e avaliando o desempenho do LLM em sua forma pura, utilizando apenas

4.2 Desenvolvimento das Arquiteturas RAG 33

seu conhecimento paramétrico.

Está arquitetura utiliza o mesmo modelo de geração das demais, assegurando que

a capacidade de geração textual seja uma constante em todos os experimentos. O

pipeline de execução, no entanto, é fundamentalmente distinto, pois a consulta do

usuário não é pré-processada por um recuperador e nenhum contexto é recuperado

de uma base de dados externa.

Em vez disso, a consulta é enviada diretamente ao LLM. A interação é gerenciada

por um prompt que instrui o modelo a atuar como um assistente especializado

em noticias de esporte, mas com uma restrição explícita: responder à pergunta

baseando-se apenas em seu conhecimento prévio, i.e., seu pré treinamento, e não

inventar informações caso não saiba a resposta.

Esta configuração tem por objetivo isolar o conhecimento estático do modelo. As

respostas geradas por esta arquitetura servem como o ponto de referência fundamental

contra o qual a fidelidade, a relevância e a precisão das respostas aumentadas das

arquiteturas Naive, Advanced e Graph RAG são comparadas, permitindo uma

medição clara do impacto da recuperação de contexto.

4.2.2 Naive RAG: retrieve-then-read

A arquitetura Naive RAG representa a primeira e mais fundamental arquitetura

RAG avaliada neste estudo. Esta arquitetura adere estritamente ao paradigma

retrieve-then-read, no qual a resposta é gerada com base em um contexto dinami-

camente recuperado de uma base de conhecimento vetorial. Como as demais, ela

possui três fases principais: a indexação, a recuperação e a geração.

O processo de ingestão e indexação de dados constitui a primeira etapa da

construção da base de conhecimento. Cada um dos 210 documentos do corpus de

notícias é submetido a um processo de segmentação textual, i.e., chunking. Para esta

tarefa os textos divididos em fragmentos de 500 caracteres, com uma sobreposição

estratégica de 50 caracteres entre eles. Essa técnica de sobreposição é fundamental

para preservar a coesão semântica entre fragmentos adjacentes, mitigando o risco de

4.2 Desenvolvimento das Arquiteturas RAG 34

que informações contextuais relevantes, que se encontram nas fronteiras dos chunks,

sejam perdidas.

Após a segmentação, cada chunk de texto é transformado em uma representação

vetorial de alta dimensionalidade, um embedding, por meio do modelo de vetorização

padrão. Os chunks e seus respectivos embeddings são então armazenados em um

banco de dados.

Para garantir que a recuperação de informações seja computacionalmente viável e

rápida, mesmo com um grande volume de vetores, foi utilizada uma otimização crucial

na camada do banco de dados. Um índice do tipo HNSW foi criado sobre a coluna

de embeddings. O HNSW é um algoritmo de busca aproximada de vizinhos mais

próximos que organiza os vetores em uma estrutura de grafo multinível, permitindo

uma redução drástica na complexidade computacional das buscas de similaridade

em comparação com uma busca exaustiva, sendo essencial para aplicações em tempo

real.

O mecanismo de recuperação é ativado quando uma nova consulta é submetida.

Primeiramente, a consulta é vetorizada com o mesmo modelo de vetorização para

garantir a consistência no espaço vetorial. Em seguida, uma busca de similaridade é

executada no banco de dados para encontrar os k vetores de chunks mais próximos do

vetor da consulta. A métrica de proximidade utilizada foi a distância Euclidiana, que

identifica os fragmentos de texto semanticamente mais relevantes. Na etapa final, os k

chunks recuperados são concatenados para formar um contexto coeso, que é inserido

em um prompt estruturado e submetido ao LLM de geração. O prompt instrui o

modelo a formular sua resposta baseando-se estritamente no contexto fornecido,

buscando garantir a fidelidade da resposta à base de conhecimento.

4.2.3 Advanced RAG: Sumarização e Reordenação

O Advanced RAG foi projetado para aprimorar a qualidade do contexto recupe-

rado, visando superar as limitações da busca vetorial simples, como a recuperação

de informações relevantes, porém pouco específicas, um problema abordado por Liu

et al. (2023). Esta arquitetura introduz um pipeline de recuperação multifásico que

4.2 Desenvolvimento das Arquiteturas RAG 35

implementa etapas de pré e pós-processamento: uma camada de sumarização para a

busca inicial e um mecanismo de reordenação com um Cross-Encoder para refinar a

seleção final dos chunks, atacando diretamente a precisão do contexto fornecido ao

LLM.

A fase de indexação expande significativamente o processo da arquitetura Naive

RAG. Embora a segmentação e a vetorização dos chunks de cada documento sejam

mantidas, a sumarização é adicionada como etapa de pré-processamento. Para

cada artigo do corpus, o LLM de geração é utilizado para gerar um resumo denso e

semanticamente rico. Este resumo é então vetorizado com o modelo de vetorização

padrão e armazenado em uma tabela dedicada no banco de dados.

A criação desses resumos vetorizados estabelece um pilar estratégico para a

recuperação. Esta abordagem cria uma camada de abstração, um índice semântico

de alto nível para os documentos. A ideia é que a busca usando resumos, que

condensam a informação mais saliente de um texto, seja mais eficaz para identificar

os documentos verdadeiramente relevantes para uma consulta. Isso contrasta com

a busca direta em fragmentos de texto, que podem ser semanticamente próximos a

uma consulta por conterem termos similares, mas que podem carecer do contexto

geral para responder à pergunta de forma completa.

O processo de recuperação reflete essa estratégia em um pipeline de três estágios.

Primeiramente, na fase de pré-recuperação, a busca por similaridade é realizada

sobre os embeddings dos resumos e não dos chunks. Esta busca inicial atua como

um filtro de alta eficiência, identificando um subconjunto dos documentos mais

promissores. Em seguida, um conjunto inicial e mais amplo de chunks candidatos

é recuperado exclusivamente dos documentos selecionados na etapa anterior. Essa

estratégia de duas fases otimiza a busca, focando os recursos computacionais apenas

nos documentos com maior probabilidade de conter a resposta.

A otimização mais significativa ocorre na etapa de pós-recuperação com a re-

ordenação. Esta etapa atua sobre um conjunto ampliado de chunks candidatos,

recuperados na fase anterior, antes da seleção final. Esses chunks candidatos são

reordenados por um modelo Cross-Encoder, o ms-marco-MiniLM-L-6-v2. Diferen-

4.2 Desenvolvimento das Arquiteturas RAG 36

temente dos modelos bi-encoder, como o modelo de vetorização utilizado no Naive

RAG, que calculam os vetores da consulta e do documento de forma independente,

medindo apenas a similaridade de distância, o Cross-Encoder processa ambos si-

multaneamente. Ele recebe como entrada o par (consulta, chunk) e produz uma

pontuação de relevância muito mais precisa, pois avalia a interação semântica direta

entre os dois textos. Os chunks são então reordenados com base nessa pontuação, e

os k mais relevantes são selecionados para compor o contexto final que será enviado

ao LLM. Esta reordenação por Cross-Encoder é o que garante uma maior densidade

de informação pertinente, uma vez que a precisão contextual é superior à simples

medição de distância vetorial, minimizando a inclusão de ruído e maximizando a

relevância factual do contexto.

4.2.4 Graph RAG: Modelagem com Grafo de Conhecimento

A arquitetura Graph RAG representa uma mudança paradigmática na mode-

lagem da base de conhecimento, tratando a informação não como uma coleção de

fragmentos de texto isolados, mas sim como uma rede de entidades e relacionamentos

interconectados. A premissa desta abordagem é que o contexto estrutural e as

conexões explícitas entre os conceitos, frequentemente perdidas na linearidade do

texto, são cruciais para um raciocínio mais profundo. O objetivo é recuperar não

apenas texto relevante, mas um subgrafo de conhecimento que represente as relações

em torno da consulta do usuário.

A construção do grafo implementa um pipeline de ingestão de dados para um

banco de dados de grafos Neo4j. O processo é aplicado individualmente a cada uma

das 210 notícias que compõem o corpus de dados. Para cada um desses documentos, o

LLM de geração é utilizado para realizar a extração de conhecimento. Guiado por um

prompt com um esquema rigoroso de nós, e.g., Pessoa, Organização, e relacionamentos,

e.g., JOGA_EM, VENCEU, definido na tabela 4.1, o LLM analisa o texto e retorna

as informações extraídas em formato JavaScript Object Notation (JSON), servindo

como um padrão para a construção do grafo.

O armazenamento de dados implementado no Neo4j é de natureza híbrida, arma-

4.2 Desenvolvimento das Arquiteturas RAG 37

Rótulos de Nós Tipos de Relacionamento
Pessoa TRABALHA_EM
Organizacao JOGA_EM
Localizacao TREINA
Evento CONVOCADO_PARA
Competicao TRANSFERIDO_PARA
Posicao EMPRESTADO_POR
Conceito PARTICIPOU_DE

COMPETIU_EM
VENCEU
PERDEU_PARA
CAMPEAO_DE
VICE_CAMPEAO_DE
MARCOU_GOL_EM
DEU_ASSISTENCIA_PARA
SOFREU_FALTA_DE
LOCALIZADO_EM
SEDE_DE
PARTE_DE
E_COMPANHEIRO_DE_EQUIPE_DE
E_RIVAL_DE
E_IDOLO_DE
JOGA_NA_POSICAO

Tabela 4.1: Esquema do Grafo de Conhecimento

zenando tanto a informação estruturada extraída quanto o texto não estruturado

original. O texto de cada documento é segmentado em chunks vetorizados, arma-

zenados como nós :Chunk. A estrutura é enriquecida por múltiplas camadas de

relações que conectam os dados de diferentes formas. Existem relações estruturais,

como :PARTE_DE, que conectam um chunk ao seu documento; relações textuais,

como :PROXIMO_CHUNK, que preservam a sequência lógica do conteúdo; e re-

lações de conexão, como :MENCIONA, que vinculam um chunk às entidades que

ele contém. As próprias entidades são interligadas por diversas relações de domínio,

como :JOGA_EM, que representam os fatos extraídos do texto. Um índice vetorial

é criado nos nós :Chunk para habilitar buscas de similaridade dentro do próprio

ambiente do grafo.

O mecanismo de recuperação explora a estrutura conectada do grafo. A recupe-

ração inicia com uma busca vetorial nos nós :Chunk para identificar os pontos de

entrada mais relevantes. A partir desses chunks, uma consulta em linguagem Cypher

4.3 Resultados e Análise 38

executa uma expansão de vizinhança. Esta consulta navega pelo grafo para coletar

mais informações, incluindo o texto dos chunks vizinhos, as entidades mencionadas

e os fatos, que são relacionamentos de primeiro grau, associados a essas entidades,

construindo um subgrafo de conhecimento altamente contextualizado.

O contexto estruturado resultante, que combina texto e fatos do grafo, não é

diretamente fornecido ao LLM final. Ele passa por uma etapa crucial de síntese.

O LLM de geração é então utilizado para traduzir essa informação híbrida em um

parágrafo coeso em linguagem natural. Este parágrafo sintetizado, que encapsula a

riqueza semântica do grafo, serve como o contexto final e aprimorado para a etapa de

geração da resposta, que então prossegue de maneira análoga às outras arquiteturas,

garantindo a comparabilidade dos resultados.

Com a construção das quatro arquiteturas, o sistema de benchmark pode ser exe-

cutado. A seção a seguir detalha o processo sistemático de execução dos experimentos,

descrevendo como cada tipo de pergunta foi avaliado e seus resultados.

4.3 Resultados e Análise

A avaliação das quatro arquiteturas gerou um grande conjunto de dados, per-

mitindo uma análise granular do desempenho de cada sistema. Os resultados são

apresentados separadamente para os cenários de teste factuais e de segurança. Os

valores representam a média e o desvio padrão da pontuação de cada resposta de

cada métrica. O desvio padrão é crucial para entender a consistência; um valor

alto indica que o desempenho da arquitetura foi volátil, enquanto um valor baixo

sugere um comportamento mais previsível. A seguir são descritos os resultados do

desempenho factual e da rejeição negativa.

4.3.1 Desempenho Factual (Perguntas Simples e Multi-Contexto)

Com essa configuração composta por 660 perguntas, 630 simples e 30 de integração,

avalia a capacidade central das arquiteturas em responder a consultas factuais. A

Tabela 4.3.1 compara o desempenho dos sistemas nesta tarefa.

4.3 Resultados e Análise 39

Arquitetura Accuracy [1, 5] Faithfulness [0, 1] Context Precision [0, 1] Context Recall [0, 1]

Baseline LLM 1.4413± 0.7125 N/A N/A N/A
Naive RAG 2.7981± 1.6681 0.6337± 0.4477 0.8683± 0.3385 0.7502± 0.3919
Advanced RAG 2.7175± 1.6688 0.6146± 0.4577 0.9079± 0.2893 0.7682± 0.3748
Graph RAG 2.0952± 1.3286 0.3684± 0.4497 0.5921± 0.4918 0.3041± 0.4076

Tabela 4.2: Resultados para Perguntas Factuais
Nota: Valores apresentados no formato Média ± Desvio Padrão. N/A indica não aplicável.

Figura 4.9: Média e desvio padrão da pontuação de cada resposta de Accuracy (1-5)
atribuída pelo LLM Judge para cada arquitetura no cenário factual.

O Baseline LLM apresentou uma pontuação de qualidade de 1.4413, extremamente

baixa, como esperado, fato visualizado na Figura 4.9. O desvio padrão de 0.7125

também é baixo, indicando que o modelo foi consistentemente incapaz de responder

corretamente às perguntas sobre notícias recentes. Isso é corroborado pela Figura 4.10,

que mostra sua distribuição de notas concentrada no valor 1, tendo 439 ocorrências.

Isso valida a premissa do benchmark de que o conhecimento paramétrico do LLM é

obsoleto para este domínio.

O Naive RAG foi o vencedor em Accuracy (2.7981), como ilustra a Figura 4.9,

demonstrando que a simples implementação do retrieve-then-read produz o ganho

mais substancial sobre o Baseline. Suas métricas de pipeline, visíveis nas Figuras 4.11

4.3 Resultados e Análise 40

Figura 4.10: Contagem de ocorrências de cada nota de Accuracy (1 a 5) atribuída
pelo LLM Judge para cada arquitetura no cenário factual. Este gráfico evidencia a
distribuição real das pontuações.

e 4.12, são fortes: o Context Recall (0.7502) mostra que a busca vetorial simples foi

eficaz em encontrar o contexto necessário, e o Faithfulness (0.6337) indica que o LLM

utilizou esse contexto na maior parte do tempo. O alto desvio padrão na qualidade

(1.6681), o maior de todos e notável nas barras de erro da Figura 4.9, sugere um

desempenho polarizado. Essa polarização é ilustrada perfeitamente na Figura 4.10,

que mostra uma distribuição acentuadamente bimodal, com a maioria das respostas

concentrada nas notas 1 e 5, com 246 e 181 ocorrências, respectivamente.

O Advanced RAG, conforme visto na Figura 4.9, ficou marginalmente atrás do

Naive RAG em qualidade de resposta (2.7175). Sua principal força reside na Precisão

do Contexto (0.9079), a mais alta de todas, como destacam tanto a Figura 4.11

quanto a Figura 4.12, e com o menor desvio padrão (0.2893). Isso indica que o

Cross-Encoder é um filtro de ruído excepcional. Contudo, o Faithfulness (0.6146)

foi ligeiramente inferior ao do Naive RAG, como visto na Figura 4.11. Isso sugere

que o reranker, ao ser muito agressivo para filtrar ruído, pode ter ocasionalmente

descartado chunks que continham a resposta, levando o LLM a alucinar ou a gerar

respostas incompletas. Isso também pode indicar que a sumarização pode ter causado

perda de informação suficiente para evitar que os chunks fossem recuperados.

4.3 Resultados e Análise 41

Figura 4.11: Comparativo da média e desvio padrão das métricas de saúde do pipeline
(Faithfulness, Precision e Recall) entre as arquiteturas de RAG.

Figura 4.12: Gráfico de radar comparando o perfil de desempenho das arquiteturas
nas três métricas de pipeline: Faithfulness, Precision e Recall.

4.3 Resultados e Análise 42

O Graph RAG apresentou o desempenho factual mais fraco entre as arquiteturas

RAG (2.0952), como mostra a Figura 4.9. As métricas de pipeline, visualizadas

nas Figuras 4.11 e 4.12, revelam a causa da falha: o Context Recall (0.3041) e o

Faithfulness (0.3684) são drasticamente baixos. O perfil de desempenho do Graph

RAG na Figura 4.12 é visivelmente o menor. Uma hípotese para isso é uma falha

no retriever, pois o sistema não consegue encontrar a informação correta e, como

detalhado na Seção 4.2, a complexa etapa de síntese provavelmente distorce ou omite

fatos cruciais, resultando em um contexto pobre.

4.3.2 Rejeição Negativa (Segurança)

Este cenário, com 15 perguntas, avalia a capacidade do sistema de se abster de

responder quando nenhuma informação relevante é encontrada. Para este teste, as

métricas de pipeline, como Faithfulness, Context Precision e Context Recall, são

desconsideradas, pois um sistema ideal não deve encontrar contexto relevante. O

foco é exclusivamente na pontuação do LLM Judge, onde uma média de 5.0 significa

uma recusa perfeita.

Arquitetura Accuracy (LLM Judge) [1, 5]

Baseline LLM 5.0000± 0.0000
Naive RAG 4.5333± 1.0601
Advanced RAG 5.0000± 0.0000
Graph RAG 4.4667± 1.4075

Tabela 4.3: Resultados para Testes de Rejeição Negativa (N=15)
Nota: Valores apresentados no formato Média ± Desvio Padrão.

Os resultados da Tabela 4.3.2 podem passar do limite máximo de cinco pois os

resultados são variádos o suficiente para ter um desvio padrão alto e média está

próxima do máximo, porém não há pontuação acima de cinco. O Baseline LLM e o

Advanced RAG alcançaram um desempenho de segurança perfeito (5.0000± 0.0000).

O Baseline foi perfeito porque, na ausência de contexto, seguiu sua instrução de

prompt para não inventar respostas. O Advanced RAG foi perfeito porque seu pipeline

de sumarização e reordenação foi sofisticado o suficiente para identificar o contexto

recuperado como irrelevante e descartá-lo, fazendo com que o LLM executasse a

4.3 Resultados e Análise 43

mesma regra de recusa do Baseline.

Em contraste, o Naive RAG e o Graph RAG mostraram vulnerabilidades signifi-

cativas (4.5333 e 4.4667). Seus mecanismos de recuperação, mais simples ou mais

complexos, não conseguiram reconhecer chunks que eram semanticamente similares às

perguntas, mas factualmente irrelevantes. Isso fez com que o LLM tentasse formular

respostas baseadas em ruído, resultando em alucinações e, consequentemente, em

pontuações de segurança mais baixas e inconsistentes, como indicam os altos desvios

padrão de 1.0601 e 1.4075.

4.3.3 Análise dos Resultados

Em síntese, os resultados demonstram que, embora a introdução de qualquer forma

de RAG forneça um ganho substancial sobre o LLM puro, a complexidade adicional

nem sempre se traduz em melhor desempenho factual. O Advanced RAG provou ser

a arquitetura mais robusta e equilibrada. Embora tenha sido marginalmente inferior

ao Naive RAG em desempenho factual, foi a única arquitetura de recuperação a

alcançar a perfeição (5.0000± 0.0000) em segurança e rejeição de ruído.

Esta troca é ilustrada visualmente na Figura 4.13, que mostra o Desempenho

Factual Médio (eixo-x) contra a Segurança Média (eixo-y). Nela, o Advanced RAG

(Factual=2.7175, Segurança=5.0000) posiciona-se claramente como a arquitetura mais

próxima da área ideal, de alto desempenho e alta segurança. Em contraste, o Naive

RAG (Factual=2.7981, Segurança=4.5333) sacrifica a segurança para obter um ganho

factual marginal, enquanto o Baseline LLM (Factual=1.4413, Segurança=5.0000)

é perfeitamente seguro, mas factualmente inútil. O Graph RAG (Factual=2.0952,

Segurança=4.4667) apresenta baixo desempenho em ambos os eixos.

O Naive RAG se destacou como o melhor em desempenho factual, mas sua

alta inconsistência, com um desvio padrão de 1.6681, e sua vulnerabilidade a ruído

em testes de rejeição (4.5333) o tornam menos confiável. O Graph RAG, por sua

vez, indicou que a complexidade de sua implementação introduziu pontos de falha,

provavelmente na etapa de síntese de contexto, que degradaram severamente o

desempenho factual (2.0952), exigindo uma otimização mais refinada para superar

4.3 Resultados e Análise 44

Figura 4.13: Análise de trade-off entre o Desempenho Factual vs. Segurança das
arquiteturas.

as abordagens mais simples.

Capítulo 5

Conclusão

Este capítulo sumariza as principais descobertas do trabalho, discute as implica-

ções dos resultados obtidos no benchmark proposto e apresenta as considerações finais.

Adicionalmente, aborda as limitações do estudo e sugere direções para pesquisas

futuras, com base nos desafios identificados durante a avaliação das arquiteturas de

RAG no domínio de notícias esportivas.

5.1 Considerações finais

Este trabalho se propôs a avaliar sistematicamente o desempenho de arquiteturas

RAG em domínios de alta volatilidade, utilizando notícias esportivas como caso de

estudo. Os resultados sugerem que o conhecimento estático dos LLMs é insufici-

ente para este domínio, conforme evidenciado pelo baixo desempenho factual da

arquitetura Baseline, com Accuracy média de 1.4413.

O desenvolvimento e o teste das arquiteturas RAG revelaram que a introdução

do paradigma retrieve-then-read, Naive RAG, foi suficiente para um salto substancial

no desempenho factual, alcançando uma Accuracy média de 2.7981, em relação

ao Baseline, que obteve média de 1.4413. Este resultado evidencia a eficácia e a

necessidade do RAG para o domínio proposto.

Os resultados demonstraram que a complexidade da arquitetura não possui uma

5.2 Limitações e trabalhos futuros 46

relação linear com o desempenho, evidenciando os riscos associados à implementação

de sistemas complexos. A arquitetura Graph RAG apresentou o desempenho factual

mais fraco, com uma Accuracy média de 2.0952. As métricas críticas de Context Recall

(0.3041) e Faithfulness (0.3684) indicam que houveram falhas na implementação

do pipeline de extração e consulta ao grafo. Esses erros de implementação são

sintomáticos da alta complexidade técnica da abordagem: a necessidade de definir

esquemas ontológicos rígidos e consultas estruturadas cria múltiplos pontos de falha

que, se não perfeitamente executados, degradam severamente a recuperação.

Em contraste, a arquitetura Advanced RAG demonstrou ser a abordagem mais

equilibrada e tecnicamente viável. Embora seu desempenho factual, com Accuracy

média de 2.7175, tenha sido marginalmente inferior ao do Naive RAG, com Accuracy

média de 2.7981, sua vantagem principal residiu na robustez da implementação. Esta

foi a única arquitetura RAG a alcançar uma pontuação perfeita nos testes de rejeição

negativa, provando que a complexidade moderada de seus componentes permite uma

implementação mais segura e menos sujeita a erros operacionais do que o modelo em

grafo.

Este trabalho conclui que, para este caso de uso, a viabilidade técnica favorece

otimizações de menor complexidade de código, como a sumarização e a reordenação

com Cross-Encoder. A abordagem Graph RAG mostrou-se menos viável pois sua alta

complexidade de implementação aumenta a probabilidade de erros na codificação

do sistema, tornando-a uma escolha arriscada em comparação a alternativas mais

robustas.

5.2 Limitações e trabalhos futuros

Apesar dos resultados, este trabalho possui limitações que abrem caminhos para

pesquisas futuras. A principal limitação reside no escopo e na estrutura do conjunto

de dados. A coleta se concentrou em um único portal de notícias e, como revelado

pela análise, foi dominada pelo futebol. Adicionalmente, o conjunto de avaliação

possui uma distribuição desbalanceada entre os tipos de pergunta. Investigações

5.2 Limitações e trabalhos futuros 47

futuras devem expandir o corpus para incluir múltiplas fontes e uma variedade maior

de esportes, bem como balancear a quantidade de perguntas em cada categoria de

teste. Seria fundamental também conduzir testes longitudinais, utilizando notícias

de datas diferentes, para simular ativamente a temporalidade do domínio e avaliar

como cada arquitetura lida com a obsolescência de dados antigos.

Adicionalmente, o benchmark focou na qualidade da resposta, mas não avaliou

sistematicamente o custo computacional. O custo associado à utilização das LLMs

proprietárias, usadas como gerador e juiz, representou uma limitação prática. Este

trabalho não pôde expandir o volume de testes ou o tamanho do conjunto de dados,

pois o custo operacional se tornaria elevado. Um trabalho futuro relevante seria

incluir essa análise de custo-benefício, avaliando o tempo de inferência e o custo de

ingestão de dados de cada arquitetura, fatores críticos para domínios que exigem

atualizações constantes.

Além disso, para Graph RAG, que teve um desempenho abaixo do esperado,

investigações futuras poderiam explorar a geração de relacionamentos do tipo cus-

tomizado entre nós em tempo de execução. Isso poderia aumentar a riqueza da

informação, embora com um potencial aumento de complexidade. Por fim, sugere-se

a avaliação do impacto de diferentes modelos de embedding, Cross-Encoders e LLMs,

tanto geradores quanto juízes, no desempenho geral do pipeline, além da utilização

de avaliadores humanos para validar a acurácia do LLM Judge.

Referências

AMUGONGO, L. M. et al. Retrieval augmented generation for large
language models in healthcare: A systematic review. PLOS Digital Health,
Public Library of Science, v. 4, n. 6, p. 1–33, 06 2025. Disponível em:
<https://doi.org/10.1371/journal.pdig.0000877>.

ANISUZZAMAN, D. et al. Fine-tuning large language models for specialized use
cases. Mayo Clinic Proceedings: Digital Health, v. 3, n. 1, p. 100184, 2025. ISSN
2949-7612. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S2949761224001147>.

ASAI, A. et al. Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection. 2023. Disponível em: <https://arxiv.org/abs/2310.11511>.

CHEN, J. et al. Benchmarking Large Language Models in Retrieval-Augmented
Generation. 2023. Disponível em: <https://arxiv.org/abs/2309.01431>.

DEVLIN, J. et al. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. 2019. Disponível em: <https://arxiv.org/abs/1810.04805>.

ES, S. et al. Ragas: Automated Evaluation of Retrieval Augmented Generation. 2025.
Disponível em: <https://arxiv.org/abs/2309.15217>.

FRIEL, R.; BELYI, M.; SANYAL, A. RAGBench: Explainable Benchmark
for Retrieval-Augmented Generation Systems. 2025. Disponível em: <https:
//arxiv.org/abs/2407.11005>.

GAO, Y. et al. Retrieval-Augmented Generation for Large Language Models: A
Survey. 2024. Disponível em: <https://arxiv.org/abs/2312.10997>.

GU, J. et al. A Survey on LLM-as-a-Judge. 2025. Disponível em: <https:
//arxiv.org/abs/2411.15594>.

HOLTZMAN, A. et al. The Curious Case of Neural Text Degeneration. 2020.
Disponível em: <https://arxiv.org/abs/1904.09751>.

HUANG, L. et al. A survey on hallucination in large language models: Principles,
taxonomy, challenges, and open questions. ACM Transactions on Information
Systems, Association for Computing Machinery (ACM), v. 43, n. 2, p. 1–55, jan.
2025. ISSN 1558-2868. Disponível em: <http://dx.doi.org/10.1145/3703155>.

https://doi.org/10.1371/journal.pdig.0000877
https://www.sciencedirect.com/science/article/pii/S2949761224001147
https://www.sciencedirect.com/science/article/pii/S2949761224001147
https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2309.01431
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2309.15217
https://arxiv.org/abs/2407.11005
https://arxiv.org/abs/2407.11005
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/1904.09751
http://dx.doi.org/10.1145/3703155

REFERÊNCIAS 49

LEWIS, P. et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks. 2021. Disponível em: <https://arxiv.org/abs/2005.11401>.

LIU, N. F. et al. Lost in the Middle: How Language Models Use Long Contexts.
2023. Disponível em: <https://arxiv.org/abs/2307.03172>.

MA, X. et al. Query Rewriting for Retrieval-Augmented Large Language Models.
2023. Disponível em: <https://arxiv.org/abs/2305.14283>.

NOGUEIRA, R.; CHO, K. Passage re-ranking with bert. arXiv preprint
arXiv:1901.04085, 2019.

RADFORD, A. et al. Language models are unsupervised multitask learners. 2019.

RAFFEL, C. et al. Exploring the Limits of Transfer Learning with a Unified Text-to-
Text Transformer. 2023. Disponível em: <https://arxiv.org/abs/1910.10683>.

SOUDANI, H.; KANOULAS, E.; HASIBI, F. Fine tuning vs. retrieval augmented
generation for less popular knowledge. arXiv preprint arXiv:2403.01432, 2024.

VASWANI, A. et al. Attention Is All You Need. 2023. Disponível em:
<https://arxiv.org/abs/1706.03762>.

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2305.14283
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1706.03762

	Agradecimentos
	Resumo
	Abstract
	Lista de Figuras
	Lista de Tabelas
	Lista de Abreviaturas e Siglas
	Introdução
	Objetivo
	Resumo dos Resultados
	Organização do Trabalho

	Retrieval-Augmented Generation
	Large Language Models
	Retrieval-Augmented Generation

	Proposta
	Domínio de Notícias Esportivas
	Trabalhos Relacionados
	Conjunto de Dados de Avaliação
	Arquiteturas de RAG Selecionadas
	Metodologia de Avaliação

	Metodologia Experimental e Resultados
	Conjunto de Dados
	Construção do Conjunto de Dados
	Análise do Conjunto de Dados

	Desenvolvimento das Arquiteturas RAG
	Baseline: LLM sem Recuperação de Contexto
	Naive RAG: retrieve-then-read
	Advanced RAG: Sumarização e Reordenação
	Graph RAG: Modelagem com Grafo de Conhecimento

	Resultados e Análise
	Desempenho Factual (Perguntas Simples e Multi-Contexto)
	Rejeição Negativa (Segurança)
	Análise dos Resultados

	Conclusão
	Considerações finais
	Limitações e trabalhos futuros

	Referências

