
UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO

INSTITUTO MULTIDISCIPLINAR

DAVI CARDOSO DE OLIVEIRA

RAFAEL SOUZA DE ALMEIDA

SIGMEV - Sistema de Gerenciamento

de Medicamentos Veterinários

Prof. Filipe Braida do Carmo, D.Sc.

Orientador

Nova Iguaçu, Dezembro de 2025

SIGMEV - Sistema de Gerenciamento de Medicamentos
Veterinários

Davi Cardoso de Oliveira

Rafael Souza de Almeida

Projeto Final de Curso submetido ao Departamento de Ciência da Computação do

Instituto Multidisciplinar da Universidade Federal Rural do Rio de Janeiro como

parte dos requisitos necessários para obtenção do grau de Bacharel em Ciência da

Computação.

Apresentado por:

Davi Cardoso de Oliveira

Rafael Souza de Almeida

Aprovado por:

Prof. Filipe Braida do Carmo, D.Sc.

Prof. Viviane de Souza Magalhães, D.Sc.

Prof. Natália Chaves Lessa, D.Sc.

NOVA IGUAÇU, RJ - BRASIL

Dezembro de 2025

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO
SISTEMA INTEGRADO DE PATRIMÔNIO, ADMINISTRAÇÃO E
CONTRATOS

FOLHA DE ASSINATURAS

DOCUMENTOS COMPROBATÓRIOS Nº 33050/2025 - CoordCGCC (12.28.01.00.00.98)

 NÃO PROTOCOLADO)(Nº do Protocolo:

 (Assinado digitalmente em 12/12/2025 08:36)
FILIPE BRAIDA DO CARMO

PROFESSOR DO MAGISTERIO SUPERIOR

DeptCC/IM (12.28.01.00.00.83)

Matrícula: ###295#4

 (Assinado digitalmente em 12/12/2025 13:33)
NATALIA CHAVES LESSA

PROFESSOR DO MAGISTERIO SUPERIOR

DeptCC/IM (12.28.01.00.00.83)

Matrícula: ###435#4

 (Assinado digitalmente em 11/12/2025 15:11)
VIVIANE DE SOUZA MAGALHAES

FARMACEUTICO-HABILITACAO

DCFar (12.28.01.00.00.00.47)

Matrícula: ###463#5

 (Assinado digitalmente em 11/12/2025 15:12)
DAVI CARDOSO DE OLIVEIRA

DISCENTE

Matrícula: 2022######8

 (Assinado digitalmente em 11/12/2025 14:34)
RAFAEL SOUZA DE ALMEIDA

DISCENTE

Matrícula: 2022######9

Visualize o documento original em informando seu número: , ano: , https://sipac.ufrrj.br/documentos/ 33050 2025
tipo: , data de emissão: e o código de verificação: DOCUMENTOS COMPROBATÓRIOS 11/12/2025 c4df45aa71

https://sipac.ufrrj.br/public/jsp/autenticidade/form.jsf

Agradecimentos

Davi Cardoso de Oliveira

Em primeiro lugar, agradeço a Deus, pela vida, pelas oportunidades, pela sabedo-

ria concedida e por me sustentar nos momentos difíceis e de incerteza. Sua presença

foi essencial em cada etapa desta caminhada acadêmica.“Até os jovens se cansam

e ficam exaustos, e os moços certamente tropeçam, mas aqueles que esperam no

SENHOR renovam as suas forças” (Isaías 40:30-31).

Em especial, agradeço aos meus pais, Leandro e Danielle, pelo amor, conselhos,

paciência e por todo o apoio concedido durante todos os anos; sempre terão a minha

gratidão. Agradeço também aos meus irmãos e familiares, que sempre estiveram ao

meu lado, oferecendo força e apoio incondicional.

Aos meus amigos da graduação, que dividiram comigo não apenas os desafios

do curso, mas também os bons momentos; a boa companhia deles nas risadas, nos

trabalhos em grupo e nas longas horas de estudo foram especiais. A amizade de

vocês tornou essa jornada mais leve e memorável, sem vocês os dias na universidade

seriam somente "mais um dia", porém vocês ajudaram a tornar cada dia como único.

Aos professores da Universidade Federal Rural do Rio de Janeiro, que ao longo

dos anos contribuíram de forma decisiva para minha formação acadêmica e pessoal.

Um agradecimento especial ao meu orientador, Prof. Filipe Braida do Carmo, por

toda a paciência, dedicação e apoio ao longo do desenvolvimento deste trabalho. Sua

orientação técnica e seus conselhos foram cruciais. Obrigado por acreditar neste

projeto e me incentivar a seguir sempre em frente.

i

Rafael Souza de Almeida

Agradeço ao meu Senhor e Salvador Jesus Cristo; sem Sua força neste momento,

jamais teria conseguido.“Ele é a imagem do Deus invisível, o primogênito de toda a

criação. Pois nele foram criadas todas as coisas, nos céus e sobre a terra, as visíveis

e as invisíveis, sejam tronos, sejam soberanias, quer principados, quer potestades.

Tudo foi criado por meio dele e para ele.” (Colossenses 1:15-16).

Agradeço aos meus pais, Fábio e Adriana, e também ao meu irmão, Gustavo.

Todo o apoio deles foi crucial durante esse período, e agradeço a Deus por terem sido

a minha base durante momentos tão difíceis e conturbados. Vocês são um presente

de Deus em minha vida. Amo muito vocês.

Um agradecimento especial ao meu orientador, Prof. Filipe Braida do Carmo,

pelo acompanhamento próximo e pelas contribuições valiosas ao longo do projeto.

Sua orientação e paciência foram decisivas para o sucesso deste trabalho.

Agradeço aos meus amigos de graduação, Davi Cardoso, Maxwell William e

Leonardo Aizhu. Passamos por muitas coisas e nem acredito que está finalmente

acabando. Agradeço pela amizade de vocês durante todo esse tempo, os momentos

felizes e os momentos conturbados. As incontáveis provas que fizemos e as mais

variadas discussões sobre diversos assuntos. . . Levarei vocês em meu coração.

Agradeço aos amigos da minha igreja, em especial ao GAJ, grupo que tanto amo.

Posso dizer que não possuo apenas amigos, mas irmãos em Cristo. Cada oração,

cada risada e cada semana em que eu contava as coisas que estava passando, vocês

estavam lá me ajudando. Sou muito grato a Deus por isso.

Por fim, agradeço a todos que, de alguma forma, deixaram sua marca nessa

trajetória. Muito obrigado por fazerem parte dessa conquista.

SDG!

ii

RESUMO

SIGMEV - Sistema de Gerenciamento de Medicamentos Veterinários

Davi Cardoso de Oliveira e Rafael Souza de Almeida

Dezembro/2025

Orientador: Filipe Braida do Carmo, D.Sc.

O uso de medicamentos veterinários é essencial para a saúde animal e para a

segurança dos produtos de origem animal. No entanto, sistemas existentes para

consulta a esses fármacos possuem limitações recorrentes no acesso a dados confiáveis,

atualizados e estruturados sobre medicamentos, frequentemente dispersos em fontes

diversas e carentes de padronização. Diante dessa problemática o presente trabalho

descreve o desenvolvimento do Sistema de Gerenciamento de Medicamentos Veteri-

nários (SIGMEV), uma plataforma web criada para centralizar, organizar e facilitar

o acesso a informações técnicas sobre fármacos utilizados na medicina veterinária. A

solução final permite realizar consultas detalhadas, filtragens rápidas e visualização

clara de informações essenciais, como princípios ativos, classes farmacológicas, indi-

cações de uso, restrições legais e exigências de prescrição. O trabalho demonstra a

relevância do uso de tecnologias modernas no desenvolvimento de sistemas aplicados

à saúde animal e sugere caminhos para aprimoramentos futuros, como expansão

funcional e integração com fontes externas de dados.

Palavras-chave: SIGMEV; Medicamentos veterinários; Sistemas de informação;

Consulta farmacológica; Saúde animal.

iii

ABSTRACT

SIGMEV - Sistema de Gerenciamento de Medicamentos Veterinários

Davi Cardoso de Oliveira and Rafael Souza de Almeida

Dezembro/2025

Advisor: Filipe Braida do Carmo, D.Sc.

The use of veterinary medicines is essential for animal health and for ensuring

the safety of products of animal origin. However, existing systems for consulting

information on these drugs often present recurring limitations, including the lack of

reliable, updated, and structured data, which is frequently dispersed across multiple

sources and lacks standardization. In response to this issue, this work presents

the development of SIGMEV, a web-based platform designed to centralize, organize,

and facilitate access to technical information on pharmaceuticals used in veterinary

medicine. The proposed solution enables detailed queries, fast filtering, and clear

visualization of essential data such as active ingredients, pharmacological classes,

indications, legal restrictions, and prescription requirements. This study highlights

the relevance of modern web technologies in the development of information systems

applied to animal health and suggests potential directions for future improvements,

including functional expansion and integration with external data sources.

Keywords: SIGMEV; Veterinary medicines; Information systems; Pharmacolo-

gical consultation; Animal health.

iv

Lista de Figuras

Figura 3.1: Página inicial do Plumb’s. 16

Figura 3.2: Página inicial do Vetsmart. 17

Figura 3.3: Diagrama de casos de uso. 22

Figura 3.4: Diagrama Entidade-Relacionamento do SIGMEV. 23

Figura 4.1: Tela inicial de consulta pública do SIGMEV. 39

Figura 4.2: Tela com os resultados da pesquisa do princípio ativo amoxicilina. 40

Figura 4.3: Página de detalhes do medicamento Duprancil. 40

Figura 4.4: Tela de autenticação para acesso à área administrativa. 41

Figura 4.5: Painel administrativo na visão administrador. 41

Figura 4.6: Formulário para o cadastro de um novo medicamento. 42

Figura 4.7: Formulário para a edição de um medicamento existente. 43

Figura 4.8: Painel de gerenciamento de usuários. 43

Figura 4.9: Formulário para o cadastro de um novo usuário. 44

Figura 4.10: Formulário para edição de um usuário. 44

Figura 4.11: Tabela de princípios ativos. 45

Figura 4.12: Tabela de classes farmacológicas. 45

Figura 4.13: Tabela espécies. 46

v

Lista de Tabelas

Tabela 3.1: Estrutura da Tabela Usuario. 24

Tabela 3.2: Estrutura da Tabela Papel. 24

Tabela 3.3: Estrutura da Tabela Medicamento. 25

Tabela 3.4: Estrutura da Tabela Principio_ativo. 25

Tabela 3.5: Estrutura da Tabela Classe_farmacologica. 25

Tabela 3.6: Estrutura da Tabela Especie. 25

Tabela 3.7: Estrutura da Tabela Associativa Medicamento_Principios_ativos. 26

Tabela 3.8: Estrutura da Tabela Associativa Medicamento_especies. 26

Tabela 3.9: Estrutura da Tabela Associativa Medicamento_Classes_farmacologicas. 27

Tabela 3.10: Estrutura da Tabela Associativa Medicamento_Lookalike. 28

Tabela 3.11: Estrutura da Tabela Associativa Medicamento_Soundalike. . . . 28

vi

Lista de Abreviaturas e Siglas

UFRRJ Universidade Federal Rural do Rio de Janeiro

PK Chave Primária

FK Chave Estrangeira

JSX Javascript XML

SIGMEV Sistema de Gerenciamento de Medicamentos Veterinários

DOM Document Object Model

API Application Programming Interface

HTML HyperText Markup Language

CSS Cascading Style Sheets

URM Uso Racional de Medicamentos

FPS Frames Per Second

UI User Interface

UX User Experience

RF Requisitos Funcionais

RNF Requisitos Não Funcionais

RN Regras de Negócio

CU Casos de Uso

DER Diagrama Entidade Relacionamento

SPA Single Page Application

MVC Model-View-Controller

vii

ORM Object-Relational Mapping

SQL Structured Query Language

CLI Command-Line Interface

API REST Representational State Transfer Application Programming Interface

HTTP Hypertext Transfer Protocol

MCP Model Context Protocol

viii

Sumário

Agradecimentos i

Resumo iii

Abstract iv

Lista de Figuras v

Lista de Tabelas vi

Lista de Abreviaturas e Siglas vii

1 Introdução 1

1.1 Objetivo . 2

1.2 Organização do Trabalho . 3

2 React 4

2.1 Definição . 5

2.2 Contexto Histórico . 6

2.2.1 Atualizações . 7

2.3 Fundamentação Teórica . 11

ix

3 SIGMEV 13

3.1 Visão geral do Sistema . 14

3.2 Trabalhos Relacionados . 15

3.2.1 Plumb’s . 15

3.2.2 Vetsmart . 16

3.2.3 Posicionamento do SIGMEV 17

3.3 Requisitos do Sistema . 17

3.3.1 Requisitos Funcionais . 18

3.3.2 Regras de Negócio . 19

3.3.3 Casos de Uso . 21

3.4 Modelagem de Dados . 22

3.4.1 Entidades . 23

3.4.2 Relacionamentos . 26

4 Implementação 29

4.1 Tecnologias Utilizadas . 29

4.1.1 React . 30

4.1.2 AdonisJS . 30

4.1.3 InertiaJS . 31

4.1.4 PostgreSQL . 32

4.1.5 shadcn/ui . 32

4.2 Estrutura e Arquitetura do Projeto Proposto 33

4.2.1 Starter kit . 34

x

4.2.2 Monorepo . 35

4.2.3 Padrão de design MVC . 36

4.2.4 Arquitetura Modular por Funcionalidade 37

4.3 Interfaces do Sistema . 38

4.3.1 Fluxo de Consulta Pública . 39

4.3.2 Painel de Gerenciamento Administrativo 40

4.3.3 Formulários de cadastro de medicamentos e edição 42

4.3.4 Painel de gerenciamento de usuários 42

4.3.5 Outros gerenciamentos . 44

5 Conclusão 47

5.1 Considerações finais . 47

5.2 Limitações e trabalhos futuros . 49

Referências 51

A Especificação de Casos de Uso 54

xi

Capítulo 1

Introdução

O uso inadequado ou indiscriminado de medicamentos pode resultar na presença

de resíduos químicos em alimentos, no desenvolvimento de resistência antimicrobi-

ana e em impactos negativos à saúde ambiental (Agência Nacional de Vigilância

Sanitária (ANVISA), 2019). Na medicina humana, protocolos rígidos de gestão de

medicamentos já são consolidados para minimizar erros de prescrição e administra-

ção (ANACLETO et al., 2010). Em contrapartida, a medicina veterinária opera

em um contexto de maior complexidade biológica e informacional, como apontam

Santamaria e Zimmerman (2011): o médico-veterinário precisa lidar com múltiplas

espécies e terminologias não padronizadas, o que dificulta a uniformização de dados

e procedimentos.

Essa complexidade é agravada pela fragmentação tecnológica, pois segundo

Lustgarten et al. (2020), a ausência de integração entre sistemas veterinários cria

“silos” de informação, dificultando o acesso a dados clínicos e farmacológicos essenciais.

Embora o Ministério da Agricultura, Pecuária e Abastecimento (2021) destaque

avanços normativos relacionados ao controle e registro de produtos veterinários,

profissionais, pesquisadores e estudantes ainda enfrentam dificuldades para acessar

informações técnico-científicas atualizadas e confiáveis (GAMA, 2024).

Além disso, a prática veterinária depende de dados precisos sobre indicações

terapêuticas, princípios ativos, dosagens, contraindicações, espécies-alvo e restrições

1.1 Objetivo 2

legais. Segundo Vlasiou (2024), a falta de padronização e integração entre instituições

reduz a confiabilidade das informações e aumenta a carga computacional para a

integração de dados.

Diante desse cenário, o acesso a informações confiáveis torna-se condição essencial

para garantir a segurança terapêutica e promover o Uso Racional de Medicamentos

(URM), conceito igualmente fundamental na saúde pública, conforme o Ministério da

Saúde (2024). A carência de bases unificadas na veterinária compromete o URM e

está associada ao aumento de erros de medicação, situados entre os eventos adversos

mais frequentes na rotina clínica (PINHO; NASR-ESFAHANI; PANG, 2024).

Assim, reforça-se a necessidade de sistemas que centralizem, organizem e facilitem

o acesso a dados confiáveis. Nesse contexto, a informatização surge como uma

estratégia fundamental para otimizar a gestão de informações e apoiar a prática

clínica e acadêmica. Ferramentas digitais com interfaces intuitivas, mecanismos de

busca eficientes e atualizações contínuas tornam-se indispensáveis para atender às

demandas regulatórias e operacionais, especialmente diante das lacunas persistentes

na padronização e disponibilização de informações sobre medicamentos veterinários

no cenário brasileiro (PAESE; JESUS; ANDRADE, 2023).

1.1 Objetivo

Este trabalho propõe o desenvolvimento de um sistema web voltado ao cadastro,

gerenciamento e consulta estruturada e detalhada de medicamentos de uso veterinário.

Este projeto foi idealizado para ser utilizado por um grupo de extensão vinculado

ao Departamento de Medicina Veterinária da Universidade Federal Rural do Rio de

Janeiro (UFRRJ). Nesse contexto, o sistema contempla a participação de diferentes

perfis de usuários, incluindo alunos, responsáveis pelo cadastro e atualização das

informações dos medicamentos; profissionais da saúde, que podem colaborar com

a validação, cadastro, revisão e complementação dos dados; e administradores,

encarregados do gerenciamento geral da plataforma, do controle de acessos e da

manutenção da integridade das informações. Essa abordagem colaborativa busca

1.2 Organização do Trabalho 3

integrar ensino, extensão e prática profissional.

O sistema deve assegurar a segurança, a integridade e a manutenção contínua

dos dados, atendendo às demandas operacionais dos profissionais da área. Assim, o

projeto busca oferecer um ambiente seguro e confiável, no qual especialistas possam

supervisionar, inserir, editar e remover informações da base de dados, garantindo

a veracidade e a constante atualização do conteúdo disponibilizado. Além disso,

propõe-se o desenvolvimento de uma interface responsiva e intuitiva, capaz de se

adaptar a diferentes dispositivos e de facilitar a navegação do usuário, promovendo

uma experiência de uso acessível, eficiente e consistente.

1.2 Organização do Trabalho

• Capítulo 2: Nesse capítulo será abordado a fundamentação teórica do React e

como seu ecossistema foi a solução para garantia de usabilidade e acessibilidade

em diferentes dispositivos, com uma interface responsiva e interativa.

• Capítulo 3: Este capítulo detalha a concepção e o desenvolvimento do sistema

web para dados farmacológicos veterinários. São abordados a modelagem de

dados, a arquitetura e as funcionalidades, como cadastro, gerenciamento e

busca estruturada de medicamentos.

• Capítulo 4: Descreve todas as tecnologias utilizadas no desenvolvimento, a

estrutura e arquitetura do projeto, além de mostrar as interfaces do mesmo

para o usuário e o administrador.

• Capítulo 5: Resume os principais resultados do trabalho, discute as limitações

encontradas e propõe sugestões para futuras pesquisas e aprimoramentos do

sistema.

Capítulo 2

React

Diante da necessidade de um sistema web moderno, intuitivo e capaz de organizar

informações de forma eficiente, torna-se fundamental selecionar tecnologias que

ofereçam estabilidade, ampla documentação e um conjunto de ferramentas robusto.

Para o desenvolvimento da interface escolhemos a biblioteca React por possuir um

ecossistema maduro e abrangente, além de apresentar a maior popularidade entre

desenvolvedores, conforme pesquisa realizada em 20231.

Esse ecossistema torna o React especialmente adequado para a construção de

interfaces dinâmicas, escaláveis e de fácil manutenção, alinhando-se diretamente às

demandas do sistema proposto. Esta escolha justifica-se pela sua ampla adoção

no desenvolvimento web moderno e pela capacidade de proporcionar experiências

interativas, rápidas e dinâmicas aos usuários. Neste capítulo, abordaremos sobre a

definição desta principal tecnologia utilizada neste projeto, seu contexto histórico

onde foi pensada e criada, sua fundamentação teórica e como a utilizamos neste

trabalho.
1<https://survey.stackoverflow.co/2023/>

https://survey.stackoverflow.co/2023/

2.1 Definição 5

2.1 Definição

Segundo sua própria documentação2, o React é uma biblioteca JavaScript de

código aberto desenvolvida pela Meta (Facebook), voltada para a construção de

interfaces de usuário a partir de componentes reutilizáveis, o que facilita a modulari-

zação e a manutenção de aplicações web modernas (BANKS; PORCELLO, 2020).

A ideia fundamental do React é que qualquer interface, independentemente de sua

complexidade, pode ser dividida em pequenos blocos de construção independentes

chamados componentes. Um componente encapsula sua própria lógica, sua própria

marcação por meio de uma sintaxe chamada Javascript XML (JSX) e, opcionalmente,

seu próprio estado interno (GACKENHEIMER, 2015). Com base nessa ideia, em

uma aplicação web, a barra de busca pode ser um componente, a lista de resultados

pode ser outro, e cada item individual dessa lista pode ser um componente. Esses

componentes menores podem, então, ser combinados, dando origem a componentes

maiores e, por fim, à construção de toda a página.

Outro aspecto essencial, que também é definido na documentação, é a utilização

do Virtual Document Object Model (DOM). O DOM virtual é definido como um

conceito de programação em que uma representação ideal, ou virtual, de uma

interface do usuário é mantida na memória e sincronizada com o DOM real por

uma biblioteca como o ReactDOM 3. O desenvolvedor não interage diretamente com

a Application Programming Interface (API) do DOM como no Javascript ; em vez

disso, fornece instruções que ele deseja que o React construa. Este, por sua vez

cuidará da renderização e reconciliação dos elementos. Isso possibilita um processo de

atualização eficiente ao aplicar no DOM real apenas as modificações necessárias, em

um processo otimizado que resulta em uma aplicação rápida e fluida (FEDOSEJEV,

2015).
2<https://pt-br.legacy.reactjs.org/>
3<https://legacy.reactjs.org/docs/faq-internals.html>

https://pt-br.legacy.reactjs.org/
https://legacy.reactjs.org/docs/faq-internals.html

2.2 Contexto Histórico 6

2.2 Contexto Histórico

O JavaScript, surgiu em 1995, criado por Brendan Eich na Netscape Commu-

nications, com o objetivo inicial de permitir maior interatividade em páginas web

(FLANAGAN, 2020). Nos primeiros anos, a linguagem era utilizada apenas para

tarefas simples, como validação de formulários e pequenas animações, sendo vista

como uma ferramenta de apoio ao HyperText Markup Language (HTML) e Cascading

Style Sheets (CSS). Com o passar do tempo, sua evolução foi marcada pela padroni-

zação do ECMAScript, que estabeleceu uma base comum para implementação nos

navegadores (ZAKAS, 2016).

Essa evolução consolidou o JavaScript não apenas como uma linguagem de

script, mas como o núcleo da web moderna, tornando-se um dos pilares essenciais

no desenvolvimento de aplicações interativas e dinâmicas. Conforme destacam

FLANAGAN (2020) e ZAKAS (2016), o JavaScript deixou de ser uma ferramenta

auxiliar para assumir um papel central na construção de experiências web ricas e

responsivas, impulsionado pela padronização do ECMAScript, a popularização de

frameworks e bibliotecas modernas.

No entanto, o crescimento da complexidade das aplicações trouxe limitações rele-

vantes na manipulação direta do DOM e na organização do código. Desenvolvedores

passaram a enfrentar problemas de performance, duplicação de lógica e dificuldade de

manutenção conforme o tamanho das aplicações aumentava (BANKS; PORCELLO,

2020). Foi nesse contexto que começaram a surgir soluções voltadas para a com-

ponentização e para um melhor gerenciamento de estado, como o AngularJS e o

Backbone.js, cada uma propondo diferentes abordagens para o desenvolvimento web

modular e reativo (POPA; ALBERT, 2018). A necessidade de uma arquitetura mais

eficiente e previsível motivou o desenvolvimento de novas ferramentas e, entre elas, o

React, que viria a redefinir a maneira como as interfaces são construídas.

O React surgiu em 2011 como uma solução interna desenvolvida pela equipe de

engenharia do Facebook, liderada por Jordan Walke, com o propósito de otimizar

o desempenho e a manutenção das interfaces da plataforma, que enfrentava desa-

2.2 Contexto Histórico 7

fios de escalabilidade e lentidão nas atualizações dinâmicas de conteúdo (BANKS;

PORCELLO, 2020). A primeira implementação pública ocorreu em 2013, durante

a conferência JSConf US, marcando o início de uma nova era no desenvolvimento

front-end ao introduzir o conceito de component-based architecture e a ideia do

VirtualDOM, que revolucionaram a forma como aplicações web reativas passaram a

ser concebidas (ACCOMAZZO; MURRAY; LERNER, 2017).

A filosofia por trás do React prioriza a previsibilidade e a simplicidade no fluxo de

dados, sintetizada pelo princípio do one-way data binding, no qual a informação flui

em uma única direção, dos componentes pais para os filhos, reduzindo a complexidade

de estados e interações (BANKS; PORCELLO, 2020). Com o passar dos anos, o React

passou a incorporar novos recursos e paradigmas, como o uso de hooks, introduzidos

em 2019, que permitiram a utilização de estado e ciclo de vida em componentes

funcionais 4.

2.2.1 Atualizações

A arquitetura Fiber, introduzida na versão 16, ampliou ainda mais a capacidade

do React de lidar com atualizações concorrentes e complexas (CLARK, 2017). O

Fiber divide as tarefas de renderização em unidades menores, chamadas fibers, que

podem ser pausadas, priorizadas e retomadas, permitindo que interações do usuário,

como cliques ou rolagem, sejam respondidas imediatamente, mesmo enquanto grandes

atualizações de interface estão em andamento (ABRAMOV, 2019). Essa abordagem

cooperativa aproxima o React de um modelo de execução concorrente, aumentando a

responsividade da aplicação sem exigir mudanças drásticas na lógica do programador.

Na versão 16.8 foram introduzidos os Hooks, que possuem o papel de permitir

o uso de estado e outros recursos do React sem a necessidade da criação de uma

classe. Também se tornou possível criar Hooks próprios para compartilhar lógica

stateful reutilizável entre os componentes. Isso tornou o React ainda mais flexível,

pois em código complexo, a simplicidade dos componentes funcionais com Hooks

contribui para a legibilidade e depuração do que o uso de this e o ciclo de vida
4<https://react.dev/learn>

https://react.dev/learn

2.2 Contexto Histórico 8

complexo das classes, o que leva a uma redução significativa de bugs (ABRAMOV,

2019). Isso não apenas simplifica a composição de componentes, mas também facilita

a reutilização de lógica de estado entre diferentes partes da aplicação, promovendo

maior modularidade e previsibilidade.

Segundo DODDS (2018), os Hooks permitem refatoração e reúso seguros por

meio da criação de Custom Hooks, permitindo que desenvolvedores extraiam a lógica

com estado para uma função reutilizável. Isso reduz o potencial de erros e promove

a segurança, especialmente em bases de código extensas, pois a lógica complexa é

isolada e pode ser testada. Encerrando a versão 16 na atualização 16.13.0, o foco

esteve apenas na correção de bugs e na descontinuação de alguns aspectos, tendo em

vista que, por ser a última atualização da versão 16, a equipe de desenvolvedores já

estava se preparando para a nova versão que viria a ser lançada.

Na versão 17, o React não buscou grandes atualizações de API; em vez disso, o

foco foi facilitar seu uso. Em particular, o React 17 é uma versão de transição que

torna mais seguro incorporar uma árvore gerenciada por uma versão do React dentro

de uma árvore gerenciada por outra versão (ABRAMOV; NABORS, 2020). Nessa

versão, o React ainda funcionava essencialmente como um renderizador síncrono, no

qual a maioria das atualizações era tratada de forma linear; isto é, uma vez iniciado

o processo de renderização, o React não podia interrompê-lo, reordená-lo ou atribuir

prioridades diferentes a partes da interface (KAPOOR, 2022).

Era até eficiente para aplicações menores, mas começou a se tornar um gargalo

conforme os projetos cresceram, pois qualquer atualização iniciava um ciclo de

renderização que precisava ser completado antes que o navegador pudesse responder

a novas interações do usuário, então, em casos de componentes mais pesados ou

listas extensas, isso causava travamentos momentâneos, quedas de Frames Per

Second (FPS) e sensação de lentidão 5.

A versão 18 introduziu uma série de mecanismos projetados especificamente para

superar essas limitações e gargalos das versões anteriores, buscando tornar o ecossis-

tema mais preparado para cenários concorrentes. Uma das principais melhorias foi a
5<https://legacy.reactjs.org/blog/2022/03/29/react-v18.html>

https://legacy.reactjs.org/blog/2022/03/29/react-v18.html

2.2 Contexto Histórico 9

introdução do automatic batching, que agrupa automaticamente diversas atualizações

de estado, inclusive fora do escopo de eventos React, reduzindo renderizações desne-

cessárias e melhorando a performance da aplicação 6. Adicionalmente, APIs como

startTransition e useDeferredValue permitem classificar atualizações como urgentes

ou não-urgentes, conferindo ao desenvolvedor controle fino sobre o agendamento

das renderizações. Assim, com essas ferramentas, é possível filtrar grandes volumes

de dados ou renderizar listas pesadas sem comprometer a interatividade (RAFAL,

2021).

Também foi consolidado uma nova forma para o componente Suspense7 fazendo

dele uma das novidades da nova arquitetura concorrente, permitindo que a interface

gerencie estados de carregamento de forma mais fluida e inteligente. Diferente das

abordagens antigas, em que componentes precisavam controlar manualmente loading

states, o Suspense delega ao próprio React a responsabilidade de decidir o melhor

momento para exibir, ocultar ou adiar partes da interface. Este comportamento

é otimizado quando usado junto com a API de transição startTransition, se um

componente suspende durante uma transição, o React evita substituir imediatamente

o conteúdo visível por um fallback, e aguarda até que dados suficientes estejam

prontos para evitar um estado de carregamento ruim.

Essa estratégia aprimora a experiência do usuário em cenários nos quais partes da

User Interface (UI) dependem de dados assíncronos, evitando flashes de carregamento

desnecessários e transições abruptas. Além disso, o Suspense tornou-se um recurso

essencial em aplicações modernas, pois possibilita interfaces mais responsivas mesmo

em ambientes com latência variável, alinhando-se às práticas de User Experience (UX)

resiliente em sistemas web contemporâneos (WIERUCH, 2022).

Na área de estilização, há a possibilidade de criar estilos diretamente em código

JavaScript, em vez de escrever arquivos CSS. Para isso, costuma-se utilizar uma

biblioteca de CSS-em-JavaScript. Na versão 18, o React trouxe uma atualização

importante para esse ecossistema: a criação do hook useInsertionEffect8. Esse hook
6<https://legacy.reactjs.org/blog/2022/03/29/react-v18.html>
7<https://react.dev/reference/react/Suspense>
8<https://react.dev/reference/react/useInsertionEffect>

https://legacy.reactjs.org/blog/2022/03/29/react-v18.html
https://react.dev/reference/react/Suspense
https://react.dev/reference/react/useInsertionEffect

2.2 Contexto Histórico 10

permite que a injeção de estilos ocorra no momento exato do ciclo de renderização,

antes do cálculo do layout, evitando, assim, reflows custosos em ambientes com

renderização concorrente.

Esse hook foi projetado como uma alternativa segura ao useLayoutEffect em casos

em que a ordem de inserção de estilos é crítica para evitar o chamado layout thrashing.

Isso ocorre porque, se o desenvolvedor inserir estilos durante a renderização e o React

estiver processando uma atualização não bloqueante, o navegador recalculará os

estilos a cada quadro enquanto renderiza a árvore de componentes, o que pode ser

extremamente lento. O useInsertionEffect é mais adequado do que inserir estilos

dentro de useLayoutEffect ou useEffect, pois garante que, quando outros Effects

forem executados nos componentes, as tags de estilo já tenham sido inseridas. Caso

contrário, cálculos de layout em Effects comuns estariam incorretos devido a estilos

desatualizados 9.

A evolução apresentada na versão 18 ganhou maturidade e novos desdobramentos

com o lançamento do React 19, divulgado oficialmente em dezembro de 2024. Essa

versão aprofunda o compromisso da biblioteca com experiências mais fluidas e com

uma integração mais sólida entre cliente e servidor. Um dos avanços mais populares

é a introdução das Actions, que representam uma nova abordagem para lidar com

operações assíncronas, oferecendo controle automático de erros, gerenciamento de

estado pendente e suporte nativo a atualizações (NOVOTNY, 2024).

Essa funcionalidade possibilita interfaces que reagem instantaneamente, reduzindo

a latência percebida pelo usuário e minimizando retrabalhos no gerenciamento manual

de estados assíncronos. Assim, aplicações que dependem de inserções, edições ou

consultas dinâmicas, como o sistema que será proposto mais adiante neste trabalho,

no Capítulo 3, beneficiam-se diretamente da previsibilidade e da robustez dessas

novas APIs 10.

Paralelamente, o React 19 consolidou o modelo de Server Components como

principal atualização. Ele já vinha sendo explorado de forma experimental na versão
9<https://react.dev/reference/react/useLayoutEffect>

10<https://react.dev/blog/2024/12/05/react-19>

https://react.dev/reference/react/useLayoutEffect
https://react.dev/blog/2024/12/05/react-19

2.3 Fundamentação Teórica 11

18, mas apenas agora alcançou maturidade e adoção oficial. Esse avanço reduz

significativamente o volume de JavaScript enviado ao navegador e melhora o tempo

de carregamento inicial. A versão 19 também introduziu novas diretivas, como use

client e use server, que delimitam de maneira explícita o contexto de execução dos

módulos, simplificando a arquitetura de aplicações híbridas (GEEKSFORGEEKS,

2025).

Além disso, as novas APIs de pré-renderização presentes em react-dom/static,

como prerender e prerenderToNodeStream, permitem a geração de HTML estático

de maneira incremental via streaming, promovendo uma hidratação mais eficiente e

uma experiência progressiva, bastante relevante para aplicações que necessitam de

otimização para mecanismos de busca e carregamentos iniciais rápidos (NALAWADE,

2024).

2.3 Fundamentação Teórica

O React se consolidou como um marco no desenvolvimento web moderno por

adotar uma filosofia declarativa e baseada em componentes, permitindo que os

desenvolvedores descrevam o resultado final desejado da interface sem se preocupar

com cada passo da atualização do DOM (BANKS; PORCELLO, 2020). No paradigma

declarativo, o programador especifica o que a interface deve exibir para determinado

estado da aplicação, enquanto o React, por meio de seu algoritmo de reconciliação

e do VirtualDOM, calcula automaticamente como transformar o estado atual no

desejado, aplicando apenas as mudanças mínimas necessárias.

Em contraste, o paradigma imperativo do Javascript pede que o desenvolvedor

detalhe cada passo de manipulação do DOM, tornando aplicações complexas mais

propensas a erros, difíceis de manter e menos escaláveis (FLANAGAN, 2020). Assim,

a abordagem declarativa do React simplifica o gerenciamento de estado e promove

previsibilidade, modularidade e manutenção facilitada, especialmente em aplicações

de grande escala (MINNICK, 2022).

O VirtualDOM é uma das inovações centrais que permitem ao React funcionar

2.3 Fundamentação Teórica 12

de forma eficiente. Ele atua como uma representação intermediária da interface,

calculando as mudanças mínimas necessárias antes de aplicar qualquer modificação

ao DOM real (BANKS; PORCELLO, 2020). Essa abstração reduz drasticamente o

custo de renderizações repetidas, tornando o React particularmente adequado para

interfaces dinâmicas e altamente interativas. Como observa ZAKAS (2016), operações

diretas sobre o DOM são significativamente mais custosas, e a abordagem do React

oferece um equilíbrio entre desempenho e simplicidade, mesmo em aplicações de

grande porte.

Capítulo 3

SIGMEV

A necessidade de acesso tecnicamente eficiente, organizado e confiável a infor-

mações sobre medicamentos de uso veterinário, discutida no Capítulo 1, evidencia

algumas lacunas significativas na prática clínica. A integração de conjuntos de dados

díspares requer recursos computacionais e expertise significativos, que muitas vezes

não estão disponíveis em clínicas veterinárias menores ou com recursos limitados

(VLASIOU, 2024).

Nesse contexto, torna-se imprescindível adotar uma solução tecnológica capaz de

centralizar informações essenciais, otimizar o fluxo de busca e reduzir a dependência de

materiais dispersos ou desatualizados. Assim, o desenvolvimento de uma plataforma

digital especializada surge como uma possível resposta ao problema identificado,

alinhando-se às necessidades profissionais e acadêmicas da área.

Diante dessa motivação, este capítulo apresenta o Sistema de Gerenciamento de

Medicamentos Veterinários (SIGMEV), proposto como uma ferramenta capaz de

consolidar dados técnicos, facilitar processos de consulta e oferecer uma interface

moderna, responsiva e intuitiva, utilizando a tecnologia React, conforme discutido no

Capítulo 2. Como objetivo central, o projeto busca organizar, atualizar e disponibi-

lizar informações detalhadas sobre medicamentos de uso veterinário, contribuindo

para a precisão das decisões terapêuticas e apoiando a formação de estudantes e

profissionais da área.

3.1 Visão geral do Sistema 14

Para isso, o SIGMEV integra mecanismos de busca, categorização por princípios

ativos, classes farmacológicas, espécies indicadas, observações importantes e outras

variáveis essenciais ao uso responsável de fármacos. Ao sistematizar tais elementos em

uma única plataforma, o sistema busca reduzir o tempo gasto em consultas dispersas,

mitigar erros de interpretação e ajudar nas práticas veterinárias, respondendo à

necessidade de integração de dados apontada por Lustgarten et al. (2020). As

próximas seções detalharão o processo de concepção do SIGMEV, abordando a visão

geral do sistema, trabalhos relacionados, requisitos, casos de uso e a modelagem de

dados.

3.1 Visão geral do Sistema

O SIGMEV foi concebido para integrar o ecossistema veterinário, estruturando-se

em duas vertentes operacionais: o gerenciamento da base de dados e a consulta pública.

Para as rotinas de gestão e curadoria (parte privada), o sistema foi projetado para

atender a três perfis de usuários: administradores (incluindo docentes e pesquisadores),

profissionais da saúde e alunos (profissionais em formação).

Os administradores são os únicos responsáveis pelo cadastro de novos usuários

na plataforma e, juntamente com os profissionais da saúde, possuem permissão para

realizar o gerenciamento completo de medicamentos, princípios ativos, espécies e

classes farmacológicas. Os alunos, por sua vez, terão permissões limitadas: poderão

apenas adicionar novos medicamentos e visualizar os já cadastrados. Os medicamentos

inseridos por alunos, assim como todos os recém cadastrados, permanecerão com

visibilidade privada até que um administrador ou profissional da saúde revise suas

informações e autorize sua publicação.

A parte pública poderá ser acessada por profissionais da saúde, incluindo alunos

em formação, desde que aceitem o termo de uso que confirma sua atuação ou formação

na área. Após concordar com o termo, o usuário poderá consultar medicamentos

pelo nome ou princípio ativo e visualizar as informações associadas a cada item

cadastrado no sistema.

3.2 Trabalhos Relacionados 15

Em resumo, o sistema fundamenta-se na separação funcional entre o ambiente

de gestão e o ambiente de consulta. A área privada atua como um mecanismo

de controle, onde a informação é inserida e validada por usuários autenticados. A

área pública serve exclusivamente como interface de disseminação do conhecimento

consolidado. Essa distinção assegura que apenas dados revisados e aprovados estejam

disponíveis para consulta externa, preservando a integridade da base farmacológica e

garantindo que o acesso a informações sensíveis ocorra mediante a devida confirmação

de responsabilidade profissional.

3.2 Trabalhos Relacionados

A análise de soluções existentes no mercado é uma etapa fundamental para validar

a relevância do SIGMEV e identificar as lacunas que o projeto se propõe a preencher.

No cenário atual da informação farmacológica veterinária, duas soluções polarizam o

mercado, sendo elas o Plumb’s, que é a referência global de conteúdo, e o Vetsmart,

que atua como plataforma de gestão predominante no Brasil. A comparação com esses

agentes permite evidenciar como o SIGMEV inova ao promover a democratização

do acesso e a curadoria científica colaborativa.

3.2.1 Plumb’s

O Plumb’s é considerado o padrão ouro em farmacologia veterinária mundial e está

disponível em formatos impresso e digital (Figura 3.1). A ferramenta oferece dados

exaustivos sobre farmacocinética, farmacodinâmica e dosagens. Sua confiabilidade

resulta de sua rigorosa curadoria de dados, potencializada pelo meio digital. A

plataforma de assinatura é constantemente revisada e atualizada por um corpo de

mais de 200 especialistas globais, permitindo que as informações sobre dosagens

específicas, interações medicamentosas e novas pesquisas sejam incorporadas em

tempo real (PLUMB´S, 2025).

Entretanto, a aplicação dessa ferramenta no contexto acadêmico brasileiro en-

contra barreiras significativas que o SIGMEV visa mitigar diretamente. A primeira

3.2 Trabalhos Relacionados 16

Figura 3.1: Página inicial do Plumb’s.

dificuldade é o idioma, visto que a plataforma é exclusivamente em inglês e limita

o acesso de estudantes e técnicos que não dominam a língua. A segunda barreira

é financeira, dado o alto custo da assinatura em moeda estrangeira. O SIGMEV

se diferencia ao atuar justamente na democratização do conhecimento, pois oferece

informação técnica de alta qualidade em língua portuguesa e acessível a profissionais

da saúde e instituições de ensino.

3.2.2 Vetsmart

A plataforma Vetsmart 1 (Figura 3.2) consolidou-se como um vasto ecossistema

de gestão clínica e relacionamento com a indústria farmacêutica. Seu bulário é

integrado a ferramentas de prescrição e calculadoras, o que o torna extremamente

útil para a rotina comercial de consultórios.

O diferencial do SIGMEV em relação a essa solução reside na origem e no

propósito da informação. Enquanto o foco do Vetsmart prioriza a amplitude de

produtos comerciais e funcionalidades de gestão, o SIGMEV foca na profundidade

científica e na independência acadêmica. Diferente de um catálogo de produtos

guiado por parcerias de mercado, o sistema proposto constrói uma base de dados

onde a inclusão de informações sobre fármacos é guiada estritamente por critérios

farmacológicos e de necessidade clínica.
1<https://vetsmart.com.br/>

https://vetsmart.com.br/

3.3 Requisitos do Sistema 17

Figura 3.2: Página inicial do Vetsmart.

3.2.3 Posicionamento do SIGMEV

O SIGMEV se destaca pela curadoria institucional colaborativa, pois promove

a validação de dados por uma rede de pesquisadores e docentes, garantindo que

a informação reflita o consenso científico. Além disso, o SIGMEV preenche uma

lacuna crítica ao catalogar com rigor medicamentos de uso humano frequentemente

utilizados na veterinária de forma off label, centralizando informações que hoje se

encontram dispersas. Dessa forma, o SIGMEV estabelece seu diferencial ao unir a

confiabilidade da curadoria acadêmica com a soberania e a acessibilidade necessárias

para a formação dos profissionais brasileiros.

3.3 Requisitos do Sistema

O levantamento e a especificação de requisitos constituem uma das etapas mais

críticas da Engenharia de Software, pois definem formalmente o que o sistema

deve realizar e as restrições que devem ser respeitadas (PRESSMAN, 2010). A

especificação de requisitos atua como um contrato entre a equipe de desenvolvimento

e os stakeholders, reduzindo ambiguidades e servindo de base para as atividades de

verificação e validação (SOMMERVILLE, 2016). Erros cometidos nesta fase são

especialmente mais difíceis de corrigir em estágios posteriores do projeto, o que

reforça a necessidade de uma análise cuidadosa e detalhada (PRESSMAN, 2010).

3.3 Requisitos do Sistema 18

3.3.1 Requisitos Funcionais

Os Requisitos Funcionais (RF) descrevem as funcionalidades e serviços que o

sistema deve fornecer, incluindo o modo como ele deve reagir a determinadas entradas

e comportar-se em situações específicas (SOMMERVILLE, 2016). Esses requisitos

traduzem as necessidades dos usuários em comportamentos observáveis do software,

definindo o que o sistema deve realizar para atingir seus objetivos.

Os seguintes RF foram definidos para o SIGMEV:

• RF-01: O sistema deve permitir cadastrar usuários.

• RF-02: O sistema deve permitir editar usuários.

• RF-03: O sistema deve permitir excluir usuários.

• RF-04: O sistema deve controlar o acesso às funcionalidades baseado no papel

de cada usuário.

• RF-05: O sistema deve permitir o cadastro de medicamentos.

• RF-06: O sistema deve permitir a edição de medicamentos.

• RF-07: O sistema deve permitir a exclusão de medicamentos.

• RF-08: O sistema deve permitir a busca de medicamentos.

• RF-09: O sistema deve permitir a consulta dos detalhes de um medicamento.

• RF-10: O sistema deve permitir editar princípios ativos.

• RF-11: O sistema deve permitir excluir princípios ativos.

• RF-12: O sistema deve permitir cadastrar classes farmacológicas.

• RF-13: O sistema deve permitir editar classes farmacológicas.

• RF-14: O sistema deve permitir excluir classes farmacológicas.

• RF-15: O sistema deve permitir cadastrar espécies animais.

3.3 Requisitos do Sistema 19

• RF-16: O sistema deve permitir editar espécies animais.

• RF-17: O sistema deve permitir excluir espécies animais.

3.3.2 Regras de Negócio

As Regras de Negócio (RN) são diretrizes que governam o funcionamento do

sistema, refletindo políticas, procedimentos e restrições do domínio veterinário.

Diferentemente dos RF e Requisitos Não Funcionais (RNF), elas não descrevem o

que o sistema faz ou como se comporta tecnicamente, mas determinam as condições

e restrições operacionais que garantem a consistência, integridade e validade dos

dados e processos.

As seguintes RN foram definidos para o SIGMEV:

• RN-01 - Aplica-se ao RF-01 e RF-02: O cadastro de novos usuários e edição

só podem ser realizados por um administrador. É necessário o preenchimento

dos seguintes campos obrigatórios: “nome completo”, “e-mail”, “papel” e “senha”.

Um usuário deve possuir um dos seguintes papéis: Administrador, Profissional

da Saúde ou Aluno.

• RN-02 - Aplica-se ao RF-03: A exclusão de um usuário só pode ser feita

por um administrador e deve exigir confirmação explícita do mesmo, escrevendo

o e-mail do usuário a ser excluído.

• RN-03 - Aplica-se ao RF-04: O acesso às funcionalidades é restrito por

papel. Apenas Administradores podem gerenciar usuários (RF-01, RF-02,

RF-03). Apenas Administradores e Profissionais da Saúde podem gerenciar

medicamentos (RF-05, RF-06, RF-07), princípios ativos (RF-10, RF-11), classes

farmacológicas (RF-12, RF-13, RF-14) e espécies (RF-15, RF-16, RF-17). Os

Alunos podem apenas cadastrar medicamentos (RF-05) e visualizar a lista de

medicamentos cadastrados.

• RN-04 - Aplica-se ao RF-05: O cadastro e edição de medicamentos exige

os seguintes campos obrigatórios: “Nome comercial”, “Princípio ativo”, “Classe

3.3 Requisitos do Sistema 20

farmacológica”, “Espécie”, “Descrição do medicamento”, “Posologia”, “Indicação

de uso”, “Restrição de uso” e “Observações importantes”.

• RN-05 - Aplica-se ao RF-05 e RF-06: Todos os medicamentos recém

cadastrados devem ter visibilidade privada, podendo ser alterada para público

por um Profissional da Saúde ou Administrador.

• RN-06 - Aplica-se ao RF-07: A exclusão de um medicamento deve exigir

confirmação explícita do usuário.

• RN-07 - Aplica-se ao RF-08: Para buscar um medicamento (RF-08), o

usuário deve primeiro aceitar um termo de condição confirmando que é um

profissional da saúde.

• RN-08 - Aplica-se ao RF-08: A busca de medicamentos (RF-08) é pública

por nome comercial ou princípio ativo.

• RN-09 - Aplica-se ao RF-10: A edição de um princípio ativo (RF-10)

limita-se à alteração do seu nome. O cadastro de novos princípios ativos

ocorre exclusivamente através do cadastro de medicamentos (RF-05), não

sendo permitido um cadastro avulso.

• RN-10 - Aplica-se ao RF-11: A exclusão de um princípio ativo (RF-11) só

é permitida se o princípio ativo não estiver associado a nenhum medicamento;

caso contrário, a operação deve ser negada.

• RN-11 - Aplica-se ao RF-12 e RF-13: O cadastro e a edição de classes

farmacológicas exigem apenas a informação do nome da classe.

• RN-12 - Aplica-se ao RF-14: A exclusão de uma classe farmacológica só é

permitida se esta não estiver associada a nenhum medicamento; caso contrário,

a operação deve ser negada.

• RN-13 - Aplica-se ao RF-15 e RF-16: O cadastro e a edição de espécies

exigem apenas a informação do nome da espécie.

3.3 Requisitos do Sistema 21

• RN-14 - Aplica-se ao RF-17: A exclusão de uma espécie só é permitida se

esta não estiver associada a nenhum medicamento; caso contrário, a operação

deve ser negada.

3.3.3 Casos de Uso

Os Casos de Uso (CU) descrevem como os diferentes atores interagem com o

sistema para alcançar objetivos específicos, representando o comportamento funcional

esperado do software sob a perspectiva do usuário final (SOMMERVILLE, 2016).

Cada caso de uso detalha as ações principais, as condições de entrada e saída, e as

possíveis exceções que podem ocorrer durante a execução.

O Diagrama de Casos de Uso do sistema (Figura 3.3) ilustra as interações funcio-

nais e a hierarquia de permissões entre os atores envolvidos. O Administrador possui

acesso total ao sistema: ele herda todas as competências de gestão de informações

farmacológicas (e.g., medicamentos, princípios ativos, espécies, classes farmacológi-

cas) e, adicionalmente, detém a exclusividade sobre a manutenção administrativa,

como o cadastro, edição e exclusão de usuários.

Por sua vez, o ator Profissional da Saúde atua no núcleo operacional do sistema,

concentrando-se estritamente no gerenciamento dos dados técnicos veterinários, sem

permissões para alterar credenciais de acesso de outros usuários. Os atores Aluno e

Usuário Público possuem escopos de interação mais restritos, limitando-se, respecti-

vamente, à colaboração no cadastro de medicamentos e à consulta de informações.

O detalhamento completo de todos os fluxos, encontra-se na Especificação de Casos

de Uso, disponível no Apêndice deste trabalho.

3.4 Modelagem de Dados 22

Figura 3.3: Diagrama de casos de uso.

3.4 Modelagem de Dados

Para representar a estrutura lógica dos dados do sistema e as relações entre as

principais entidades, foi elaborado um Diagrama Entidade Relacionamento (DER).

Esse diagrama tem como objetivo demonstrar como as informações são organizadas,

armazenadas e interligadas no banco de dados, garantindo consistência, integridade

e facilidade de manutenção das informações referentes aos medicamentos de uso

veterinário e seus respectivos atributos.

A modelagem do banco de dados é uma etapa essencial, pois define a estrutura

que sustentará todas as operações do sistema, como o cadastro, edição e consulta de

medicamentos. O projeto lógico de um banco de dados relacional tem como objetivo

3.4 Modelagem de Dados 23

eliminar redundâncias, assegurar integridade e fornecer uma estrutura eficiente para

o armazenamento e a recuperação dos dados (DATE, 2004).

Figura 3.4: Diagrama Entidade-Relacionamento do SIGMEV.

O modelo apresentado na Figura 3.4 foi concebido para atender a todos os requi-

sitos funcionais e regras de negócio levantados, garantindo a integridade referencial

dos dados. Sua estrutura foi pensada para oferecer uma base consistente e escalável,

capaz de sustentar futuras expansões do sistema.

3.4.1 Entidades

A entidade Usuário (Tabela 3.1) é responsável por armazenar as informações de

identificação e acesso dos usuários do sistema, como nome, e-mail, senha criptografada

e status de atividade. Essa entidade é fundamental para o controle de autenticação

e autorização no ambiente privado do sistema, atendendo diretamente aos RF-01,

3.4 Modelagem de Dados 24

RF-02 e RF-03. Possui Chave Primária (PK) para identificação única na tabela,

podendo ser referenciada como Chave Estrangeira (FK) para outras entidades.

Já a entidade Papel (Tabela 3.2) define os diferentes perfis de acesso disponíveis

na plataforma, conforme especificado na RN-01. Cada função possui permissões

distintas, garantindo a segurança e a integridade dos dados manipulados e viabilizando

o cumprimento do RF-04.

Tabela 3.1: Estrutura da Tabela Usuario.
Coluna Descrição

id PK Identificador único do usuário.
role_id FK Chave estrangeira que referencia a tabela Papel.
nome_completo Nome completo do usuário.
e-mail Endereço de e-mail para login (único).
senha Senha criptografada do usuário.
avatar_url URL para a imagem de avatar do usuário.
avatar JSON para armazenar metadados do avatar.

Tabela 3.2: Estrutura da Tabela Papel.
Coluna Descrição

id PK Identificador único do papel (perfil).
nome Nome do papel (e.g., Administrador, Aluno).
descricao Descrição das permissões do papel.

A entidade Medicamento (Tabela 3.3) é a principal do modelo proposto. Ela

é responsável por armazenar informações gerais sobre os medicamentos de uso

veterinário, como nome comercial, tipo de receita, modo de uso, descrição, risco

ocupacional e visibilidade (pública ou privada). Esta tabela é a base para a execução

dos requisitos RF-05 (Cadastrar Medicamento), RF-06 (Editar Medicamento) e

RF-07 (Excluir Medicamento). Os campos obrigatórios para o cadastro e edição

estão definidos na RN-04.

A entidade Principio_ativo (Tabela 3.4) armazena os dados referentes aos com-

ponentes químicos responsáveis pelos efeitos farmacológicos dos medicamentos. Essa

entidade foi modelada de forma independente para atender aos requisitos RF-10 e

RF-11 (Editar e Excluir princípios ativos) e às regras de negócio RN-09 e RN-10, que

define suas regras de manipulação. Da mesma forma, a entidade Classe_farmacologica

3.4 Modelagem de Dados 25

Tabela 3.3: Estrutura da Tabela Medicamento.
Coluna Descrição

id PK Identificador único do medicamento.
receita Tipo de receita exigida para o medicamento.
produto_comercial Nome comercial do medicamento.
uso Modo de uso do medicamento.
descricao_medicamento Descrição detalhada do medicamento.
risco_ocupacional Informações sobre risco ocupacional.
privacidade Controle de visibilidade (Público/Privado).

(Tabela 3.5) tem como objetivo classificar os medicamentos de acordo com sua finali-

dade terapêutica. Essa estrutura implementa os requisitos RF-12, RF-13 e RF-14, e

segue as regras RN-11 e RN-12.

Tabela 3.4: Estrutura da Tabela Principio_ativo.
Coluna Descrição

id PK Identificador único do princípio ativo.
nome Nome do princípio ativo.

Tabela 3.5: Estrutura da Tabela Classe_farmacologica.
Coluna Descrição

id PK Identificador único da classe farmacológica.
nome Nome da classe farmacológica.

Adicionalmente, a entidade Especie (Tabela 3.6) foi modelada para representar as

diferentes espécies animais às quais um medicamento pode ser indicado, garantindo

que as informações sobre o uso sejam precisas e contextualizadas. Essa modelagem

atende aos requisitos RF-14, RF-15 e RF-16, também às regras RN-13 e RN-14,

permitindo especificar, de forma estruturada, quais medicamentos são adequados

para cada espécie, evitando prescrições incorretas e contribuindo para a segurança e

a eficácia dos tratamentos veterinários.

Tabela 3.6: Estrutura da Tabela Especie.
Coluna Descrição

id PK Identificador único da espécie animal.
nome Nome da espécie (ex: Canina, Felina).

3.4 Modelagem de Dados 26

3.4.2 Relacionamentos

O relacionamento entre as entidades é fundamental para a correta organização e

o manejo das informações no sistema. No modelo proposto, a entidade Medicamento

possui um relacionamento muitos-para-muitos com Principio_ativo, uma vez que

um medicamento pode conter diversos princípios ativos, e um princípio ativo pode

estar presente em vários medicamentos. Para representar esse relacionamento, foi

criada a tabela associativa Medicamento_Principios_ativos (Tabela 3.7), contendo

as chaves estrangeiras de ambas as entidades.

Tabela 3.7: Estrutura da Tabela Associativa Medicamento_Principios_ativos.
Coluna Descrição

medicamento_id PK, FK Chave estrangeira que referencia a tabela
Medicamento.

principio_ativo_id PK, FK Chave estrangeira que referencia a tabela
Principio_ativo.

De maneira semelhante, a entidade Medicamento se relaciona com Especie, tam-

bém por meio de uma relação muitos-para-muitos, pois um mesmo medicamento

pode ser indicado para diferentes espécies animais. Esse relacionamento possui

atributos específicos, como posologia e restrição de uso, já que essas informações

variam conforme o tamanho, metabolismo ou tipo da espécie. Essa relação e seus

atributos são representados pela tabela intermediária Medicamento_especies (Tabela

3.8).

Tabela 3.8: Estrutura da Tabela Associativa Medicamento_especies.
Coluna Descrição

medicamento_id PK, FK Chave estrangeira que referencia a tabela
Medicamento.

especie_id PK, FK Chave estrangeira que referencia a tabela
Especie.

posologia Instruções de dosagem específicas para esta es-
pécie.

indicacao_uso Indicação de uso específica para esta espécie.
restricao_uso Restrições de uso específicas para esta espécie.
observacoes_importantes Observações relevantes para a espécie.
referencias_bibliograficas JSON para armazenar referências da posologia.

Da mesma forma, Medicamento e Classe_farmacologica possuem uma relação

3.4 Modelagem de Dados 27

muitos-para-muitos, visto que um medicamento pode pertencer a mais de uma classe

terapêutica e cada classe pode englobar diversos medicamentos. Para representar essa

associação, foi criada a tabela intermediária Medicamento_Classes_farmacológicas

(Tabela 3.9), responsável por vincular as chaves primárias das duas entidades.

Tabela 3.9: Estrutura da Tabela Associativa Medicamento_Classes_farmacologicas.
Coluna Descrição

medicamento_id PK, FK Chave estrangeira que referencia a tabela
Medicamento.

classe_farmacologica_id PK, FK Chave estrangeira que referencia a tabela
Classe_farmacologica.

Por fim, os relacionamentos que envolvem as entidades Lookalike e Soundalike

são do tipo muitos-para-muitos autorreferenciais, pois registram casos em que dois

ou mais medicamentos apresentam semelhanças visuais ou fonéticas entre si. Dessa

forma, um medicamento pode ser semelhante a vários outros e, simultaneamente, ser

referenciado por eles.

Na farmacologia veterinária, a precisão na identificação do princípio ativo é crítica,

pois a fisiologia comparada dita que um medicamento seguro para uma espécie pode

ser ineficaz ou letal para outra devido a diferenças metabólicas e idiossincrasias.

Um exemplo envolve os corticosteroides Prednisona e Prednisolona. A confusão

ortográfica entre esses compostos pode levar à administração de Prednisona em

felinos ou equinos, espécies que possuem baixa eficiência hepática para converter

este profármaco em sua forma ativa (Prednisolona), resultando em falha terapêutica.

Analogamente, erros fonéticos entre antibióticos e imunossupressores com nomes

semelhantes podem acarretar intoxicações severas.

Para representar essas relações, foram criadas as tabelas associativas Medica-

mento_Lookalike (Tabela 3.10) e Medicamento_Soundalike (Tabela 3.11), que

contêm as chaves estrangeiras da própria entidade Medicamento. Uma dessas chaves

aponta para o medicamento principal e outra para o medicamento semelhante.

3.4 Modelagem de Dados 28

Tabela 3.10: Estrutura da Tabela Associativa Medicamento_Lookalike.
Coluna Descrição

medicamento_id PK, FK Chave do medicamento principal.
medicamento_lookalike_id PK, FK Chave do medicamento com aparência si-

milar.

Tabela 3.11: Estrutura da Tabela Associativa Medicamento_Soundalike.

Coluna Descrição

medicamento_id PK, FK Chave do medicamento principal.

medicamento_soundalike_id PK, FK Chave do medicamento com fonética si-

milar.

Capítulo 4

Implementação

Este capítulo apresenta de forma detalhada o processo de construção do SIGMEV,

enfatizando as etapas de desenvolvimento e as escolhas realizadas ao longo do projeto.

Serão destacadas as principais tecnologias adotadas, justificando sua utilização frente

às necessidades identificadas, além do registro das decisões técnicas tomadas em cada

fase para alcançar os objetivos propostos.

4.1 Tecnologias Utilizadas

A escolha das tecnologias utilizadas neste trabalho considerou diversos fatores

relevantes para o desenvolvimento de um sistema moderno e eficiente. Foram

analisadas características relacionadas à eficiência, confiabilidade, facilidade de

manutenção e adaptabilidade do sistema frente a novas demandas. Também se levou

em conta a capacidade de integração entre diferentes módulos, a consistência no

desempenho e a possibilidade de evolução futura da aplicação. Dessa forma, as

tecnologias selecionadas oferecem uma base sólida, permitindo que o sistema atenda

aos objetivos propostos de maneira consistente ao longo do tempo.

4.1 Tecnologias Utilizadas 30

4.1.1 React

O React1, como citado anteriormente no capítulo 2, é uma biblioteca JavaScript

para a construção de interfaces de usuário web e nativas. Ele permite compor

interfaces complexas a partir de pequenas e isoladas peças de código chamadas

componentes. Além disso, o React adota uma abordagem declarativa, o que facilita o

raciocínio sobre o estado da aplicação e melhora a previsibilidade do comportamento

da interface.

Um dos principais fatores que motivaram a escolha do React para o desenvolvi-

mento do projeto foi a sua natureza Single Page Application (SPA). Esse paradigma

possibilita a criação de uma experiência de usuário mais fluida e contínua, eliminando

a necessidade de recarregamentos completos a cada interação ou navegação entre

seções.

No contexto do sistema proposto, essa característica foi especialmente relevante

para a consulta de medicamentos, o cadastro e gerenciamento de usuários, bem

como para a interface do painel administrativo, que exigem eficiência para garantir

usabilidade e confiabilidade. Dessa forma, a utilização do React contribuiu não

apenas para a performance técnica da aplicação, mas também para a melhoria da

experiência de interação dos usuários finais.

4.1.2 AdonisJS

O AdonisJS 2 é um framework web para Node.js que prioriza o uso de TypeScript

(TypeScript-first). Além disso, o framework pode ser utilizado tanto para a criação de

aplicações full-stack, abrangendo front-end e back-end, quanto para o desenvolvimento

de servidores de API em JSON. Essa versatilidade o consolida como uma solução

robusta e moderna para sistemas escaláveis.

Outro ponto relevante do AdonisJS é a adoção do padrão de design Model-View-

Controller (MVC). Esse padrão organiza a aplicação em camadas com responsabili-
1<https://react.dev/>
2<https://docs.adonisjs.com/guides/preface/introduction>

https://react.dev/
https://docs.adonisjs.com/guides/preface/introduction

4.1 Tecnologias Utilizadas 31

dades distintas, favorecendo a clareza estrutural e a manutenibilidade do sistema.

No contexto do presente projeto, a utilização do MVC foi fundamental para garantir

uma divisão lógica entre dados, regras de negócio e interface, o que contribuiu para

o desenvolvimento de uma aplicação mais organizada e de fácil evolução.

A escolha do AdonisJS foi determinante para a eficiência do projeto. Sua

estrutura centralizou a lógica de negócios e o processamento de dados do sistema de

gerenciamento, assegurando modularidade e separação de responsabilidades. Além

disso, ferramentas nativas como a Object-Relational Mapping (ORM) simplificaram

a interação com o banco de dados, reduzindo a complexidade da manipulação de

informações médicas. O uso do sistema de migrations também se mostrou essencial,

permitindo o controle evolutivo do esquema de dados e garantindo maior flexibilidade

para adaptações futuras, aspecto crucial para a manutenção e expansão de um

sistema de gerenciamento de medicamentos.

4.1.3 InertiaJS

O Inertia.js3 é uma nova abordagem para criar aplicações web voltadas ao

servidor. Com o Inertia, é possível criar SPA sem a complexidade que SPAs modernas

exigem. O Inertia não possui roteamento do lado do cliente, nem requer uma

API. A abordagem funciona muito bem com frameworks já estabelecidos, como

Laravel4 e Ruby on Rails5, permitindo aos desenvolvedores manter a familiaridade do

desenvolvimento tradicional de aplicações monolíticas, ao mesmo tempo que oferece

a experiência de usuário de uma SPA moderna.

No desenvolvimento do projeto, o uso do Inertia.js foi fundamental para integrar

o back-end em AdonisJS com o front-end em React, criando uma ponte eficiente

sem a necessidade de construir uma API separada. Essa abordagem simplificou a

comunicação entre as camadas, eliminando complexidades comuns no desenvolvimento

de SPAs modernas e permitindo manter uma arquitetura organizada dentro de um

monorepo. Com isso, o fluxo de trabalho tornou-se mais ágil e produtivo, já que foi
3<https://inertiajs.com/>
4<https://laravel.com/>
5<https://rubyonrails.org/>

https://inertiajs.com/
https://laravel.com/
https://rubyonrails.org/

4.1 Tecnologias Utilizadas 32

possível aproveitar o poder do React para a interface sem abrir mão da estrutura

robusta do AdonisJS no back-end, resultando em uma aplicação com experiência de

usuário fluida e consistente.

4.1.4 PostgreSQL

O PostgreSQL6 é reconhecido como um robusto sistema de gerenciamento de

banco de dados objeto-relacional de código aberto, que se destaca por utilizar e

estender a linguagem Structured Query Language (SQL), incorporando diversas

funcionalidades para armazenar e escalar com segurança as cargas de trabalho de

dados mais complexas. Sua reputação é solidificada pela arquitetura comprovada,

pela confiabilidade, pela integridade dos dados e pelo conjunto robusto de recursos que

oferece. Adicionalmente, sua extensibilidade e a dedicação contínua da comunidade

de código aberto garantem a entrega consistente de soluções inovadoras e de alto

desempenho no mercado.

A escolha do PostgreSQL como banco de dados do projeto foi motivada por fatores

como escalabilidade, extensibilidade e segurança. Além disso, o PostgreSQL oferece

suporte a consultas complexas, indexação avançada, tipos de dados personalizados

e extensões que aumentam significativamente sua flexibilidade. Outro aspecto

relevante é a confiabilidade e consistência dos dados garantidas por seus mecanismos

de transação (ACID), fundamentais para aplicações que exigem integridade, como

o gerenciamento de medicamentos. Com essas características, o PostgreSQL se

apresentou como a solução ideal para sustentar o crescimento do projeto, permitindo

lidar com grandes volumes de informação sem comprometer o desempenho ou a

segurança.

4.1.5 shadcn/ui

O shadcn/ui7 se apresenta como um conjunto de componentes acessíveis e com

um design elegante, atuando também como uma plataforma de distribuição de
6<https://www.postgresql.org/>
7<https://ui.shadcn.com/>

https://www.postgresql.org/
https://ui.shadcn.com/

4.2 Estrutura e Arquitetura do Projeto Proposto 33

código. Sua criação visa solucionar desafios no desenvolvimento frontend e está

fundamentada nos seguintes princípios essenciais: o código aberto, que permite a

modificação da camada superior do código do componente; a composição, onde cada

componente utiliza uma interface comum e combinável, assegurando previsibilidade;

a distribuição, facilitada por um esquema de arquivo plano e uma ferramenta de

linha de comando Command-Line Interface (CLI), que simplificam a distribuição

dos componentes.

A utilização do shadcn/ui no frontend do SIGMEV foi deliberada e trouxe

benefícios-chave para o desenvolvimento. Os componentes disponibilizados pela bibli-

oteca foram amplamente empregados na estilização da aplicação, o que possibilitou

manter uma identidade visual consistente e alinhada às boas práticas de design

moderno. Além disso, a característica de fácil modificação do código mostrou-se

essencial para adaptar os componentes às necessidades específicas do projeto, sem

que fosse necessário desenvolver cada elemento do zero. Portanto, essa flexibilidade

reduziu o tempo de implementação e aumentou a produtividade, permitindo que o

foco permanecesse nas funcionalidades principais do sistema, ao mesmo tempo em

que se assegurava uma interface agradável e acessível ao usuário final.

4.2 Estrutura e Arquitetura do Projeto Proposto

A definição da estrutura do projeto foi guiada pela necessidade de estabelecer uma

base sólida e organizada para o desenvolvimento da aplicação. Foram considerados

aspectos como a padronização do código, a facilidade de manutenção, a escalabilidade

e a integração entre os módulos do sistema. Nesse contexto, optou-se pela utilização

de um starter kit, que fornece uma configuração inicial consistente e reutilizável,

facilitando o início do desenvolvimento e promovendo boas práticas desde as primeiras

etapas.

Além disso, adotou-se o modelo de monorepo, que significa um monorepositório

centralizando todos os módulos em um único repositório, permitindo melhor controle

de versão, integração contínua e maior coerência entre as partes do sistema. Essa

4.2 Estrutura e Arquitetura do Projeto Proposto 34

estrutura visa garantir eficiência, coesão e evolutividade, assegurando que o projeto

se mantenha sustentável e de fácil expansão ao longo do tempo.

A arquitetura do projeto proposto foi concebida com o objetivo de garantir

organização e clareza na manutenção do código. A aplicação adota o padrão de

design MVC, amplamente utilizado no desenvolvimento de sistemas web por promover

a separação de responsabilidades entre as camadas de dados, interface e lógica de

controle.

O projeto foi estruturado de forma modular por funcionalidade, permitindo que

cada módulo represente um domínio específico do sistema, com seus próprios compo-

nentes e regras de negócio. Essa organização modular torna o sistema reutilizável e

de fácil evolução, ao mesmo tempo em que possibilita uma integração harmoniosa

entre as diferentes partes da aplicação.

4.2.1 Starter kit

Em muitos projetos, cada desenvolvedor depende de um conjunto comum de

atividades como design, construção, codificação, implantação e teste para o desenvol-

vimento de software (SRINIVASAN et al., 2025). Percorrer essas etapas de forma

repetitiva em cada novo projeto acaba por reduzir a produtividade do desenvolvedor

(SRINIVASAN et al., 2025). O starter kit surge como uma solução para mitigar essa

problemática, oferecendo vantagens relacionadas aos custos iniciais de configuração,

integração e aprendizado.

Um starter kit pode ser entendido como um conjunto pré-configurado de fer-

ramentas, bibliotecas e estruturas de pastas, criado com o objetivo de agilizar o

início de um projeto. Dessa forma, reduz-se o tempo de preparação do ambiente

e garante-se maior padronização entre os módulos do sistema. O starter kit pode

fornecer uma série de recursos, como templates, scripts e configurações padrão. Entre

as diversas vantagens da utilização do starter kit neste projeto, destacam-se o ganho

de produtividade, a redução de erros, o aumento do padrão de qualidade do software

e a padronização do código.

4.2 Estrutura e Arquitetura do Projeto Proposto 35

No presente trabalho, a utilização de um starter kit mostrou-se fundamental.

Como base estrutural, foi adotado o AdonisJS Starter Kit 8. Esse starter kit utilizou

AdonisJS e React como tecnologias principais de back-end e front-end, respectiva-

mente, além de um modelo de monorepositório (monorepo), já configurado para

utilização prática. Também estavam inclusos mecanismos de autenticação, como

login, cadastro e recuperação de senha. Com essa estrutura previamente estabelecida,

a produtividade no desenvolvimento foi significativamente ampliada, uma vez que

componentes complexos já estavam prontos para uso e adaptação ao contexto do

projeto.

4.2.2 Monorepo

A adoção do modelo de monorepo tem se mostrado uma prática vantajosa em

projetos de software de médio e grande porte. Essa abordagem permite maior

interação e sinergia entre diferentes projetos, reduzindo a duplicação de esforços

e aumentando a eficiência no desenvolvimento (SHAKIKHANLI; BILICKI, 2024).

Diferentemente do modelo de múltiplos repositórios (multirepo), no qual cada serviço

ou aplicação é mantido isoladamente, o monorepo centraliza todo o código-fonte em

um único repositório, promovendo padronização, melhor gestão de dependências,

maior facilidade de colaboração entre equipes e possibilita um melhor versionamento

de código.

No presente trabalho, o monorepo abriga tanto a camada de back-end, quanto a

camada de front-end. Ambas são interligadas pela biblioteca InertiaJS, que permite

a comunicação entre as duas camadas sem a necessidade de uma Representational

State Transfer Application Programming Interface (API REST), simplificando a

arquitetura e otimizando a troca de dados. Além disso, o repositório contempla

pacotes auxiliares, como bibliotecas de componentes reutilizáveis e definições de tipos

compartilhados, o que garante maior consistência e reduz a redundância de código.

A organização e a gestão das dependências foram realizadas por meio do pnpm,

enquanto o Turborepo foi empregado para a orquestração de diferentes processos,
8<https://github.com/filipebraida/adonisjs-starter-kit>

https://github.com/filipebraida/adonisjs-starter-kit

4.2 Estrutura e Arquitetura do Projeto Proposto 36

como a compilação do código build, oferecendo cache inteligente e a capacidade

de rodar tarefas de forma eficaz. O gerenciamento eficiente das dependências e a

execução paralela de tarefas reduziram o tempo necessário para etapas críticas do

ciclo de desenvolvimento. Além de acelerar o processo, essa abordagem permitiu que

somente os pacotes efetivamente modificados fossem reprocessados, economizando

recursos computacionais.

A utilização do monorepo possibilitou uma maior consistência na evolução do

projeto, já que tanto o back-end quanto o front-end, além das bibliotecas auxiliares,

compartilham a mesma base de versionamento e processos de manutenção. Essa

integração reduziu significativamente a duplicação de código e o retrabalho, uma

vez que ajustes em pacotes comuns passaram a ser propagados automaticamente

para todos os módulos dependentes. Dessa forma, tornou-se possível manter uma

arquitetura mais coesa, aumentando a integridade do sistema.

4.2.3 Padrão de design MVC

Um dos pontos centrais do framework AdonisJS é a adoção do padrão MVC.

Segundo Pop e Altar (2013), o MVC é amplamente utilizado no desenvolvimento de

aplicações web porque combina diferentes tecnologias em um conjunto de camadas

interdependentes, porém bem definidas. Esse padrão favorece a separação de respon-

sabilidades, permitindo que cada camada seja desenvolvida, testada e mantida de

forma independente. Além disso, isolar as unidades funcionais umas das outras o

máximo possível torna mais fácil para o projetista da aplicação entender e modificar

cada unidade particular sem precisar conhecer profundamente as demais (KRASNER;

POPE, 1988).

O MVC organiza a aplicação em três camadas distintas, com papéis claramente

delimitados. A camada Model é responsável pelo gerenciamento dos dados e pela

implementação da lógica de negócio, garantindo a consistência e integridade das

informações. A camada View concentra-se na exibição das informações, fornecendo

ao usuário uma interface intuitiva e agradável. Por sua vez, a camada Controller

atua como intermediária, processando as requisições do usuário, manipulando os

4.2 Estrutura e Arquitetura do Projeto Proposto 37

dados conforme necessário e retornando as respostas adequadas.

No contexto deste trabalho, o MVC foi aplicado de forma integral em cada

módulo do sistema desenvolvido com o AdonisJS. A camada Model foi utilizada para

representar as entidades do sistema e gerenciar as interações com o banco de dados,

utilizando o ORM do próprio framework. A camada Controller concentrou as regras

de negócio e o processamento das requisições Hypertext Transfer Protocol (HTTP),

sendo responsável por intermediar a comunicação entre o usuário e os dados da

aplicação. Já a camada View foi estruturada para trabalhar de forma integrada com

o React por meio do Inertia.js, garantindo uma experiência fluida e interativa. Essa

aplicação prática do MVC contribuiu diretamente para a organização do código e

para a modularidade geral do projeto.

4.2.4 Arquitetura Modular por Funcionalidade

A arquitetura adotada neste projeto segue o princípio da modularização por

funcionalidade, uma abordagem que organiza o sistema em unidades autônomas,

cada uma responsável por um domínio específico da aplicação. Essa estrutura permite

que cada módulo concentre suas próprias rotas, controladores, modelos e serviços,

reduzindo o acoplamento entre componentes e favorecendo a coesão interna. No

trabalho, os principais módulos criados foram vet, users, auth e core, cada um com

funções bem definidas e independentes.

O módulo vet concentra todas as funcionalidades relacionadas à área veterinária,

como o cadastro, listagem, pesquisa e gerenciamento de dados específicos do domínio.

O módulo users é responsável pelas operações de registro, atualização e controle

de usuários do sistema. Já o módulo auth gerencia os processos de autenticação

e autorização, garantindo a segurança e o controle de acesso às rotas e recursos.

O módulo core atua como a base estrutural do sistema, fornecendo recursos e

configurações que são compartilhados entre os demais módulos.

Essa abordagem modular traz uma série de benefícios para o desenvolvimento e

manutenção do sistema. Primeiramente, facilita a escalabilidade, uma vez que novos

módulos podem ser adicionados sem afetar a estrutura dos existentes. Além disso,

4.3 Interfaces do Sistema 38

promove uma maior organização do código, tornando mais simples a compreensão

e o rastreamento de funcionalidades específicas. Cada módulo pode ser mantido e

atualizado de forma isolada, o que reduz o risco de introdução de erros em outras

partes da aplicação.

Outro ponto relevante dessa abordagem é a facilidade na realização de testes. A

divisão do sistema em módulos independentes permite que cada parte seja testada de

forma isolada, o que aumenta a precisão e a confiabilidade dos resultados. Com essa

estrutura, é possível aplicar testes unitários e de integração de maneira mais eficiente,

validando as funcionalidades de cada módulo separadamente antes de integrá-los ao

sistema principal. Isso não apenas reduz o tempo necessário para identificar falhas,

como também simplifica a manutenção e a evolução do código, tornando o processo

de desenvolvimento mais seguro e controlado.

Portanto, a adoção da arquitetura modular por funcionalidade neste trabalho

justifica-se por sua capacidade de oferecer uma base sólida e escalável para o sistema

desenvolvido. Essa estrutura favorece a clareza na organização do código, melhora a

legibilidade, facilita a testagem e contribui diretamente para a qualidade do produto

final. Além disso, ao promover a separação de responsabilidades e o isolamento entre

componentes, essa abordagem assegura maior flexibilidade para futuras expansões

e atualizações, consolidando-se como uma solução eficiente e sustentável para o

desenvolvimento da aplicação web.

4.3 Interfaces do Sistema

O design da interface do sistema foi fundamentado em princípios de UX, com

o objetivo de criar uma ferramenta que fosse não apenas funcional, mas também

intuitiva e eficiente ao objetivo. Para isso, foram desenvolvidas telas distintas para

os dois principais casos de uso: a consulta pública e a gestão administrativa.

4.3 Interfaces do Sistema 39

4.3.1 Fluxo de Consulta Pública

O fluxo de consulta se inicia na tela principal do SIGMEV (Figura 4.1), projetada

com foco na simplicidade e na tarefa primária do usuário: a busca por informações.

Após a confirmação de que o usuário é um profissional da saúde, a busca pode ser

feita tanto pelo nome do medicamento quanto pelo nome do princípio ativo, com o

objetivo de abranger o maior número possível de resultados relevantes.

Figura 4.1: Tela inicial de consulta pública do SIGMEV.

Após a realização de uma busca, o sistema apresenta os resultados em uma lista

clara e objetiva (Figura 4.2), onde cada item exibe informações essenciais para a

identificação do fármaco.

Ao selecionar um dos resultados, o usuário é direcionado para a página de

detalhamento do medicamento (Figura 4.3). A tela é estruturada para apresentar

as informações mais críticas de forma imediata no topo da página, como princípio

ativo e categorias. Os dados mais extensos, como posologia e restrições de uso,

podem variar de acordo com a espécie, por isso, é possível navegar entre as espécies

associadas a este medicamento para obter informações destes campos.

4.3 Interfaces do Sistema 40

Figura 4.2: Tela com os resultados da pesquisa do princípio ativo amoxicilina.

Figura 4.3: Página de detalhes do medicamento Duprancil.

4.3.2 Painel de Gerenciamento Administrativo

O acesso à área de gestão do sistema é protegido por uma tela de autenticação

(Figura 4.4), garantindo que apenas usuários autorizados possam manipular os dados.

Esse processo foi implementado utilizando o módulo Auth do framework AdonisJS,

que fornece uma estrutura robusta para controle de sessão e verificação de credenciais.

Quando o usuário insere suas informações de login, é validado os dados inseridos

com o que está cadastrado no banco de dados e, em caso de sucesso, cria-se uma

sessão autenticada, permitindo o acesso às rotas e funcionalidades restritas. Caso as

credenciais sejam inválidas, uma mensagem de erro é exibida, orientando o usuário

4.3 Interfaces do Sistema 41

a corrigir as informações. Esse mecanismo assegura a integridade e a segurança do

ambiente administrativo, impedindo acessos não autorizados e protegendo os dados

sensíveis.

Figura 4.4: Tela de autenticação para acesso à área administrativa.

Após o login, o administrador é direcionado ao painel de gerenciamento de

medicamentos (Figura 4.5). Essa área restrita pode ser acessada por Administradores,

Profissionais da Saúde e Alunos, e sua visualização varia conforme o papel do usuário.

Administradores têm acesso completo a todas as funcionalidades de gerenciamento,

incluindo medicamentos e usuários. Profissionais da Saúde podem acessar apenas as

ferramentas relacionadas à gestão de medicamentos. Já os Alunos podem visualizar a

tabela de medicamentos e também cadastrar novos itens, mas sem acesso às demais

funcionalidades administrativas.

Figura 4.5: Painel administrativo na visão administrador.

4.3 Interfaces do Sistema 42

4.3.3 Formulários de cadastro de medicamentos e edição

A inserção e a atualização dos dados, que representam o núcleo da gestão de con-

teúdo, ocorrem através de um formulário dedicado e consistente, utilizado tanto para

adicionar (Figura 4.6) quanto para editar um medicamento (Figura 4.7). A consistên-

cia entre as duas operações foi uma decisão de design deliberada para reduzir a carga

cognitiva do usuário, que interage com uma interface familiar independentemente da

tarefa.

O formulário foi projetado para ser claro e intuitivo, com campos bem definidos que

correspondem diretamente aos atributos do modelo de dados. Campos obrigatórios

são marcados com um asterisco (*), uma prática de usabilidade que guia o usuário e

atua como uma primeira camada de validação para garantir a integridade dos dados

inseridos.

Figura 4.6: Formulário para o cadastro de um novo medicamento.

4.3.4 Painel de gerenciamento de usuários

Também o SIGMEV conta com um painel de gerenciamento de usuários, acessível

exclusivamente por administradores (Figura 4.8), com o objetivo de assegurar o

controle e a integridade dos dados cadastrados. Nesse painel, o administrador possui

permissões avançadas, podendo cadastrar novos usuários e definir seus respectivos

perfis de acesso (Figura 4.9).

Os papéis a serem cadastrados podem ser: administrador, profissional da saúde ou

4.3 Interfaces do Sistema 43

Figura 4.7: Formulário para a edição de um medicamento existente.

Figura 4.8: Painel de gerenciamento de usuários.

aluno. Além disso, é possível editar informações cadastrais (Figura 4.10) e remover

usuários do sistema, garantindo que apenas pessoas autorizadas mantenham acesso

ativo.

4.3 Interfaces do Sistema 44

Figura 4.9: Formulário para o cadastro de um novo usuário.

Figura 4.10: Formulário para edição de um usuário.

4.3.5 Outros gerenciamentos

Além do gerenciamento de medicamentos e usuários, o sistema oferece ao ad-

ministrador e ao profissional da saúde usuários uma série de tabelas auxiliares que

sustentam o correto preenchimento e classificação dos registros. A primeira delas é a

tabela de Princípios Ativos (Figura 4.11), que reúne todas as substâncias utilizadas

4.3 Interfaces do Sistema 45

como base farmacológica nos medicamentos cadastrados. Essa tabela permite manter

um controle estruturado dos compostos disponíveis, permitindo a edição dos nomes

de princípios ativos ou exclusão se este não estiver associado a nenhum medicamento.

Figura 4.11: Tabela de princípios ativos.

Em seguida, o sistema disponibiliza a tabela de Classes Farmacológicas (Figura

4.12), onde cada classe representa um agrupamento funcional dos medicamentos

conforme sua categoria. É permitido ao usuário autorizado fazer a criação, edição ou

exclusão de uma classe farmacológica.

Figura 4.12: Tabela de classes farmacológicas.

Por fim, a tabela de Espécies (Figura 4.13) contém a lista das espécies animais

contempladas pelo sistema. Ela é essencial para garantir que cada medicamento seja

corretamente associado às espécies para as quais seu uso é indicado ou contraindi-

cado, contribuindo para a precisão das decisões terapêuticas e para a segurança no

tratamento veterinário.

4.3 Interfaces do Sistema 46

Figura 4.13: Tabela espécies.

Capítulo 5

Conclusão

Este capítulo apresenta as considerações finais do trabalho, destacando as con-

tribuições alcançadas com o desenvolvimento do sistema SIGMEV, bem como as

principais limitações identificadas e propostas de aprimoramentos futuros. Este tra-

balho discutiu desde o contexto crítico da consulta a medicamentos de uso veterinário

no Brasil até a construção de uma solução tecnológica capaz de reduzir algumas

lacunas informacionais e apoiar profissionais, estudantes e pesquisadores da área.

5.1 Considerações finais

O presente trabalho teve como foco o desenvolvimento de um sistema web voltado

ao cadastro, gerenciamento e consulta estruturada de medicamentos de uso veterinário.

A motivação surgiu da constatação, apresentada no Capítulo 1, de que a fragmentação

de informações técnicas, a falta de bases consolidadas e a dificuldade de acesso rápido

e confiável a dados farmacológicos ainda representam obstáculos significativos na

prática veterinária atual. O SIGMEV foi criado como uma resposta direta a essas

limitações, buscando oferecer uma plataforma centralizada, intuitiva e segura para a

consulta de informações essenciais à tomada de decisão clínica.

O desenvolvimento deste projeto foi baseado nos conceitos revisados no Capítulo

2, especialmente sobre o funcionamento do React e sua evolução. Entender princípios

5.1 Considerações finais 48

como renderização declarativa, Virtual DOM, Hooks e os recursos mais recentes

das versões 18 e 19 ajudou a estruturar um front-end responsivo e eficiente. Esses

fundamentos foram importantes para tornar possível funcionalidades como filtragens

em tempo real, carregamento dinâmico de componentes e uma experiência de uso

fluida, características fundamentais para lidar com listas extensas e atualizações

constantes de dados.

A proposta no Capítulo 3 e a implementação descrita no Capítulo 4 consolidou

o SIGMEV como uma aplicação modular, escalável e adequada às necessidades

identificadas. Foram desenvolvidos módulos completos para cadastro, edição, busca

e visualização detalhada de medicamentos, além da aplicação de regras de negócio

que garantem consistência e padronização das informações. Demonstrando ser capaz

de organizar e apresentar dados essenciais, como princípios ativos, restrições de

uso, classes farmacológicas e espécies indicadas, oferecendo uma consulta confiável e

acessível.

Do ponto de vista prático, o SIGMEV representa uma contribuição relevante

ao apoiar tanto atividades acadêmicas quanto rotinas da prática veterinária. A

plataforma reduz problemas decorrentes de informações dispersas, agiliza a consulta

e aumenta a segurança no uso de medicamentos. Sob o ponto de vista tecnológico,

este trabalho mostra como ferramentas modernas de desenvolvimento web podem ser

aplicadas de maneira eficaz para solucionar demandas específicas da área veterinária,

unindo simplicidade de uso com solidez técnica.

Além disso, o estudo contribui para a discussão sobre como sistemas de infor-

mação podem melhorar a qualidade e a acessibilidade dos dados farmacológicos

veterinários, uma área que ainda apresenta carências tanto na literatura quanto

na oferta de soluções digitais especializadas. Dessa forma, o SIGMEV cumpre seu

propósito ao auxiliar o acesso às informações sobre medicamentos de uso veterinário,

proporcionando maior precisão, organização e rapidez.

5.2 Limitações e trabalhos futuros 49

5.2 Limitações e trabalhos futuros

Apesar dos avanços proporcionados pelo SIGMEV, algumas limitações ainda

podem ser observadas na versão atual do sistema e merecem atenção em melhorias

futuras. A principal delas está relacionada ao processo de inserção e atualização

das informações. Hoje, o cadastro e a revisão dos dados dependem totalmente da

intervenção manual dos responsáveis técnicos. Embora isso garanta maior controle

sobre o conteúdo, também pode tornar o fluxo de atualização mais lento e sujeito a

inconsistências, especialmente em cenários de grande volume de medicamentos ou

quando ocorre a necessidade de revisões frequentes.

Outra limitação está na ausência de mecanismos automatizados de verificação,

como validação cruzada com bases de dados oficiais, integração com APIs de órgãos

reguladores ou ferramentas que ajudem a prevenir duplicidade, erros de preenchimento

ou divergências terminológicas. A adoção desses recursos permitiria ampliar a precisão

e a confiabilidade das informações, além de reduzir a carga operacional dos gestores

do sistema.

Do ponto de vista funcional, embora o SIGMEV atenda aos requisitos principais

estabelecidos, ainda há espaço para expandir suas capacidades. Uma das possibilida-

des para trabalhos futuros envolve a criação de um módulo avançado de relatórios e

estatísticas, permitindo que o sistema também seja utilizado para fins de pesquisa,

monitoramento institucional e apoio à atividade acadêmica. A ampliação do escopo

de dados também é uma possibilidade, incluindo categorias como interações entre me-

dicamentos, calculadora de doses, farmacologia avançada ou até alertas automáticos

sobre restrições legais.

Uma outra etapa fundamental de trabalhos futuros é a validação do SIGMEV

com usuários reais, envolvendo profissionais da saúde veterinária, docentes e discentes

da área. Essa validação poderá ser conduzida por meio de estudos de uso controlados,

aplicação de questionários de usabilidade, entrevistas semiestruturadas e análise

de métricas objetivas, como tempo de execução de tarefas, taxa de erros e nível

de satisfação dos usuários. O objetivo dessa avaliação é verificar a aderência do

5.2 Limitações e trabalhos futuros 50

sistema às necessidades práticas do público-alvo, identificar dificuldades de uso,

lacunas funcionais e oportunidades de melhoria na interface e nos fluxos de interação.

Os resultados obtidos a partir dessa validação empírica servirão como base para o

refinamento contínuo do sistema, contribuindo para o aumento de sua eficiência,

usabilidade e aceitação no contexto acadêmico e profissional.

Como umas das principais evoluções futuras, prevê-se também a integração do

SIGMEV ao Model Context Protocol (MCP), um padrão recente para conexão entre

sistemas e modelos de Inteligência Artificial, possibilitando que agentes automatizados

consultem, processem e atualizem informações do banco de medicamentos de forma

segura e auditável, ampliando significativamente o potencial de uso da plataforma.

Referências

ABRAMOV, D. React v.16.8: The One With Hooks. 2019. Procure por "React v.16.8:
The One With Hooks". Disponível em: <https://legacy.reactjs.org/blog/all.html/>.

ABRAMOV, D.; NABORS, R. React v.17.0. 2020. Procure por "React v.17.0".
Disponível em: <https://legacy.reactjs.org/blog/all.html/>.

ACCOMAZZO, A.; MURRAY, N.; LERNER, A. Fullstack React: The Complete
Guide to ReactJS and Friends. 2. ed. San Francisco: Fullstack.io, 2017.

Agência Nacional de Vigilância Sanitária (ANVISA). Resíduos de medicamentos
veterinários em alimentos de origem animal - RDC 328/2019. 2019.

ANACLETO, T. A. et al. Erros de medicaç ao: Encarte de Farm’acia Hospitalar.
Revista Pharmacia Brasileira, Conselho Federal de Farm’acia, n. 124, p. 1–12, 2010.
Disponível em: <https://www.cff.org.br/sistemas/geral/revista/pdf/124/encarte_
farmaciahospitalar.pdf>.

BANKS; PORCELLO. Learning React: Modern Patterns for Developing React Apps.
2. ed. [S.l.]: O’Reilly, 2020.

CLARK, A. React v.16. 2017. Procure por "React v.16". Disponível em:
<https://legacy.reactjs.org/blog/all.html/>.

DATE, C. J. An Introduction to Database Systems. 8. ed. Boston: Addison-Wesley,
2004.

DODDS, K. C. React Hooks: What’s going to happen to my
tests? 2018. Disponível em: <https://kentcdodds.com/blog/
react-hooks-whats-going-to-happen-to-my-tests>.

FEDOSEJEV, A. React Essentials. [S.l.]: Packt, 2015.

FLANAGAN, D. Javascript: The Definitive Guide. 7. ed. Sebastopol: O’Reilly
Media, 2020.

GACKENHEIMER, C. Introduction to React. [S.l.]: Apress, 2015.

GAMA, T. A competência do farmacêutico na dispensação de medicamentos de uso
veterinário: uma revisão bibliográfica. Revista Foco, v. 17, n. 11, p. 01–27, 2024.

https://legacy.reactjs.org/blog/all.html/
https://legacy.reactjs.org/blog/all.html/
https://www.cff.org.br/sistemas/geral/revista/pdf/124/encarte_farmaciahospitalar.pdf
https://www.cff.org.br/sistemas/geral/revista/pdf/124/encarte_farmaciahospitalar.pdf
https://legacy.reactjs.org/blog/all.html/
https://kentcdodds.com/blog/react-hooks-whats-going-to-happen-to-my-tests
https://kentcdodds.com/blog/react-hooks-whats-going-to-happen-to-my-tests

REFERÊNCIAS 52

GEEKSFORGEEKS. React 19: New Features and Updates. 2025. Disponível em:
<https://www.geeksforgeeks.org/reactjs/react-19-new-features-and-updates/>.

KAPOOR, S. React 18 New Features – Concurrent Rendering, Automatic
Batching, and More. 2022. Disponível em: <https://www.freecodecamp.org/news/
react-18-new-features/>.

KRASNER, G. E.; POPE, S. T. A cookbook for using the model-view controller
user interface paradigm in smalltalk-80. Object-Oriented Programming, v. 1, n. 3, p.
26–49, 1988.

LUSTGARTEN, J. L. et al. Veterinary informatics: forging the future between
veterinary medicine, human medicine, and One Health initiatives. JAMIA Open,
Oxford University Press, v. 3, n. 2, p. 306–317, 2020.

Ministério da Agricultura, Pecuária e Abastecimento. Portaria SDA/MAPA nº 200,
de 22 de janeiro de 2021. 2021. Diário Oficial da União. Estabelece procedimentos
para adequação de registros de produtos veterinários conforme limites máximos de
resíduos definidos pela Anvisa.

Ministério da Saúde. Uso Racional de Medicamentos. 2024. Disponível em: <https://
www.gov.br/saude/pt-br/composicao/sectics/daf/uso-racional-de-medicamentos>.

MINNICK, C. Beginning ReactJS Foundations Building User Interfaces with
ReactJS. 1. ed. [S.l.]: Wiley, 2022.

NALAWADE, K. React 19: New Hooks Explained with Exam-
ples. 2024. Disponível em: <https://www.freecodecamp.org/news/
react-19-new-hooks-explained-with-examples/>.

NOVOTNY, M. whats-new-in-react-19. 2024. Disponível em: <https:
//vercel.com/blog/whats-new-in-react-19>.

PAESE, K.; JESUS, L. D.; ANDRADE, D. D. Aspectos regulatórios na produção de
medicamentos veterinários em escala magistral e industrial. Infarma – Ciências
Farmacêuticas, v. 35, n. 1, p. 14–28, 2023.

PINHO, R. H. P.; NASR-ESFAHANI, M.; PANG, D. S. J. Medication errors in
veterinary anesthesia: a literature review. Veterinary Anaesthesia and Analgesia,
v. 51, n. 3, p. 203–226, 2024.

PLUMB´S. Plumb’s Veterinary Drug Handbook Online. 2025. Disponível em:
<https://plumbs.com/>.

POP, D.-P.; ALTAR, A. Designing an mvc model for rapid web application
development. 24th DAAAM International Symposium on Intelligent Manufacturing
and Automation, 2013.

POPA, A.; ALBERT, P. A comparative study of javascript frameworks. Procedia
Computer Science, v. 141, n. 3, p. 97–104, 2018.

https://www.geeksforgeeks.org/reactjs/react-19-new-features-and-updates/
https://www.freecodecamp.org/news/react-18-new-features/
https://www.freecodecamp.org/news/react-18-new-features/
https://www.gov.br/saude/pt-br/composicao/sectics/daf/uso-racional-de-medicamentos
https://www.gov.br/saude/pt-br/composicao/sectics/daf/uso-racional-de-medicamentos
https://www.freecodecamp.org/news/react-19-new-hooks-explained-with-examples/
https://www.freecodecamp.org/news/react-19-new-hooks-explained-with-examples/
https://vercel.com/blog/whats-new-in-react-19
https://vercel.com/blog/whats-new-in-react-19
https://plumbs.com/

REFERÊNCIAS 53

PRESSMAN, R. S. Software Engineering: A Practitioner’s Approach. 7. ed. New
York: McGraw-Hill, 2010.

RAFAL, B. Concurrent rendering. Let’s take a closer look at React 18 concurrent
mode. 2021. Disponível em: <https://tsh.io/blog/react-concurent-rendering>.

SANTAMARIA, S. L.; ZIMMERMAN, K. L. Uses of informatics to solve real
world problems in veterinary medicine. Journal of Veterinary Medical Education,
University of Toronto Press, v. 38, n. 2, p. 103–109, 2011.

SHAKIKHANLI, U.; BILICKI, V. Optimizing branching strategies in mono-and
multi-repository environments: A comprehensive analysis. Computer Assisted
Methods in Engineering and Science, v. 31, n. 1, p. 81–111, 2024.

SOMMERVILLE, I. Software Engineering. 10. ed. Boston: Pearson, 2016.

SRINIVASAN, V. et al. Platfab: A platform engineering approach to improve
developer productivity. Journal of Information Systems Engineering and Business
Intelligence, v. 11, n. 1, 2025.

VLASIOU, M. C. Vet informatics and the future of drug discovery in veterinary
medicine. Frontiers in Veterinary Science, v. 11, 2024. Opinion article, Sec.
Veterinary Pharmacology and Toxicology. Disponível em: <https://www.frontiersin.
org/journals/veterinary-science/articles/10.3389/fvets.2024.1494242>.

WIERUCH, R. Road to React. 4. ed. [S.l.]: LeanPub, 2022.

ZAKAS, N. C. Understanding ECMAScript 6: The Definitive Guide for JavaScript
Developers. 1. ed. San Francisco: No Starch Press, 2016.

https://tsh.io/blog/react-concurent-rendering
https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2024.1494242
https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2024.1494242

Apêndice A

Especificação de Casos de Uso

• CU-01: Cadastrar Usuário

Ator: Administrador.

Descrição: O administrador pode cadastrar usuários definindo seus papéis

(Administrador, Profissional da Saúde ou Aluno, conforme RN-01).

Pré-condição: O administrador deve estar autenticado no sistema (Conforme

RN-03).

Fluxo principal:

1. O administrador acessa o módulo de gerenciamento de usuários.

2. O sistema exibe a lista de usuários cadastrados.

3. O administrador solicita adicionar um novo usuário.

4. O sistema exibe o formulário e solicita os dados a serem preenchidos

(conforme RN-01).

5. O administrador preenche os dados solicitados.

6. O sistema valida os dados e confirma a operação.

7. Fim do caso de uso.

Fluxos de Exceção:

6.a: Campos obrigatórios não preenchidos.

55

1. O sistema impede a confirmação e exibe uma mensagem de erro detalhando

os campos pendentes.

2. Retorna ao passo 4 do Fluxo Principal.

6.b: E-mail de usuário já existente.

1. O sistema rejeita a operação e notifica ao administrador sobre a duplici-

dade.

2. Retorna ao passo 4 do Fluxo Principal.

Pós-condição: Os dados do usuário são cadastrados com sucesso.

• CU-02: Editar Usuário

Ator: Administrador.

Descrição: O administrador pode editar usuários (conforme RN-01).

Pré-condição: O administrador deve estar autenticado no sistema (Conforme

RN-03).

Fluxo principal:

1. O administrador acessa o módulo de gerenciamento de usuários.

2. O sistema exibe a lista de usuários cadastrados.

3. O administrador solicita a edição de um usuário.

4. O sistema exibe os dados do usuário (conforme RN-01).

5. O administrador altera os dados pendentes e confirma.

6. O sistema valida os dados e confirma a operação.

7. Fim do caso de uso.

Fluxos de Exceção:

6.a: Campos obrigatórios não preenchidos.

1. O sistema impede a confirmação e exibe uma mensagem de erro detalhando

os campos pendentes.

2. Retorna ao passo 4 do Fluxo Principal.

56

6.b: E-mail de usuário já existente.

1. O sistema rejeita a operação e notifica ao administrador sobre a duplici-

dade.

2. Retorna ao passo 4 do Fluxo Principal.

Pós-condição: Os dados do usuário são editados com sucesso.

• CU-03: Excluir Usuário

Ator: Administrador.

Descrição: O administrador pode excluir usuários (conforme RN-02).

Pré-condição: O administrador deve estar autenticado no sistema (Conforme

RN-03).

Fluxo principal:

1. O administrador acessa o módulo de gerenciamento de usuários.

2. O sistema exibe a lista de usuários cadastrados.

3. O administrador solicita a exclusão de um usuário.

4. O sistema solicita confirmação explícita e preenchimento do e-mail do

usuário a ser excluído (conforme RN-02).

5. O administrador informa o e-mail e confirma.

6. O sistema remove o usuário.

7. Fim do caso de uso.

Fluxos de Exceção:

5.a: O administrador cancela a exclusão.

1. O administrador solicita o cancelamento da operação.

2. Retorna ao passo 2 do Fluxo Principal.

Pós-condição: Os dados do usuário são removidos com sucesso.

• CU-04: Cadastrar Medicamento

Ator: Usuário (Generalização de Administrador, Profissional da Saúde e

57

Aluno).

Descrição: Permitir o cadastro completo de medicamentos de uso veterinário

(conforme RN-04).

Pré-condição: O usuário deve estar autenticado.

Fluxo principal:

1. O usuário acessa o formulário de cadastro de medicamentos.

2. O sistema exibe os campos a serem preenchidos (conforme RN-04).

3. O usuário preenche os dados e confirma o envio.

4. O sistema valida os dados, armazena as informações com visibilidade Pri-

vada (conforme RN-05) e notifica o usuário sobre o sucesso da operação.

5. Fim do caso de uso.

Fluxos de Exceção:

4.a: Campos obrigatórios não preenchidos.

1. O sistema impede o armazenamento e destaca os campos faltantes com

uma mensagem de erro.

2. Retorna ao passo 2 do Fluxo Principal.

Pós-condição: O medicamento é adicionado à base de dados com visibilidade

privada (conforme RN-05).

• CU-05: Editar Medicamento

Ator: Usuário (Generalização de Administrador e Profissional da Saúde).

Descrição: Permitir a edição das informações de um medicamento, incluindo

a alteração de sua visibilidade (conforme RN-04 e RN-05).

Pré-condição: O usuário deve estar autenticado e possuir permissão (conforme

RN-03).

Fluxo principal:

1. O usuário acessa o módulo de gerenciamento de medicamentos.

2. O sistema exibe a lista de medicamentos.

58

3. O usuário seleciona um medicamento.

4. O sistema exibe os campos com os dados preenchidos (conforme RN-04).

5. O usuário altera os dados desejados e confirma as alterações.

6. O sistema valida e salva os novos dados.

7. Fim do caso de uso.

Pós-condição: Os dados do medicamento são atualizados com sucesso.

• CU-06: Excluir Medicamento

Ator: Usuário (Generalização de Administrador e Profissional da Saúde).

Descrição: Permitir a exclusão de um medicamento cadastrado (conforme

RN-06).

Pré-condição: O usuário deve estar autenticado e possuir permissão (conforme

RN-03).

Fluxo principal:

1. O usuário acessa o módulo de gerenciamento de medicamentos.

2. O sistema exibe a lista de medicamentos.

3. O usuário solicita a exclusão do medicamento.

4. O sistema solicita confirmação explícita (conforme RN-06).

5. O usuário confirma a exclusão.

6. O sistema remove o medicamento da base de dados.

7. Fim do caso de uso.

5.a: Exclusão cancelada.

1. O usuário solicita o cancelamento da operação.

2. Retorna ao passo 2 do Fluxo Principal.

Pós-condição: O medicamento é removido permanentemente do sistema.

• CU-07: Buscar e Consultar Medicamento (Público)

Ator: Usuário (Generalização de Público geral).

59

Descrição: Permitir que o usuário não autenticado busque medicamentos

(conforme RN-08) e consulte seus detalhes, mediante a declaração de que é

um profissional da saúde (conforme RN-07).

Pré-condição:

Fluxo principal:

1. O usuário acessa a página de busca pública.

2. O sistema exibe um aviso solicitando a declaração “Sou um profissional

da saúde” (RN-07).

3. O usuário aceita a declaração.

4. O sistema habilita a barra de busca.

5. O usuário insere termos de busca (nome comercial ou princípio ativo,

conforme RN-08).

6. O sistema exibe a lista de medicamentos com visibilidade “Pública” que

correspondem à busca.

7. O usuário seleciona um medicamento para consultar seus detalhes.

8. Fim do caso de uso.

Fluxos de Exceção:

3.a: Usuário não aceita a declaração.

1. O sistema impede a habilitação da busca (passo 4) e informa que o acesso

é restrito.

2. Fim do caso de uso.

6.a: Nenhum resultado encontrado.

1. O sistema exibe a mensagem “Nenhum medicamento ou princípio ativo

encontrado” e mantém o usuário na tela de busca (passo 4).

2. Fim do caso de uso.

Pós-condição: O usuário consulta os detalhes dos medicamentos públicos.

60

• CU-08: Editar Princípios Ativos

Ator: Usuário (Generalização de Administrador e Profissional da Saúde).

Descrição: Permitir a edição de princípios ativos (conforme RN-09). O

cadastro é realizado via CU-05.

Pré-condição: O usuário deve estar autenticado e possuir permissão (conforme

RN-03).

Fluxo principal:

1. O usuário acessa o módulo “Princípios Ativos”.

2. O sistema exibe a lista de princípios ativos cadastrados.

3. O usuário solicita a edição de um princípio ativo.

4. O sistema exibe os dados e permite a alteração do nome (conforme RN-

09).

5. O usuário edita e confirma.

6. O sistema valida e salva a alteração.

7. Fim do caso de uso.

Pós-condição: O princípio ativo é editado.

• CU-09: Excluir Princípios Ativos

Ator: Usuário (Generalização de Administrador e Profissional da Saúde).

Descrição: Permitir a exclusão de princípios ativos (conforme RN-10).

Pré-condição: O usuário deve estar autenticado e possuir permissão (conforme

RN-03).

Fluxo principal:

1. O usuário acessa o módulo “Princípios Ativos”.

2. O sistema exibe a lista de princípios ativos cadastrados.

3. O usuário solicita a exclusão de um princípio ativo.

4. O sistema solicita confirmação.

5. O usuário confirma.

61

6. O sistema valida e remove o princípio ativo.

7. Fim do caso de uso

Fluxos de Exceção:

6.a: Exclusão negada (princípio ativo em uso).

1. O sistema verifica se o princípio ativo está relacionado a um medicamento

(conforme RN-10).

2. O sistema exibe a mensagem “Este item não pode ser excluído pois está

associado a um medicamento”.

3. Retorna ao passo 2 do fluxo principal.

Pós-condição: O princípio ativo é removido.

• CU-10: Cadastrar Classe Farmacológica

Ator: Usuário (Generalização de Administrador e Profissional da Saúde).

Descrição: Permitir o cadastro de classes farmacológicas (conforme RN-11).

Pré-condição: O usuário deve estar autenticado e possuir permissão (conforme

RN-03).

Fluxo principal:

1. O usuário acessa o módulo “Classes farmacológicas”.

2. O sistema exibe a lista de classes cadastradas.

3. O usuário solicita o cadastro da classe farmacológica.

4. O sistema exibe os dados a serem preenchidos (conforme RN-11).

5. O usuário preenche o campo e confirma.

6. O sistema salva a nova classe e atualiza a lista.

7. Fim do caso de uso.

Pós-condição: Uma nova classe farmacológica é cadastrada.

• CU-11: Editar Classe Farmacológica

Ator: Usuário (Generalização de Administrador e Profissional da Saúde).

62

Descrição: Permitir a edição de Classes Farmacológicas (conforme RN-11).

Pré-condição: O usuário deve estar autenticado e possuir permissão (conforme

RN-03).

Fluxo principal:

1. O usuário acessa o módulo “Classes farmacológicas”.

2. O usuário solicita a edição da classe farmacológica.

3. O sistema exibe os dados a serem preenchidos (conforme RN-11).

4. O usuário edita o campo e confirma.

5. O sistema salva a edição da classe e atualiza a lista.

6. Fim do caso de uso.

Pós-condição: A classe farmacológica é editada.

• CU-12: Excluir Classe Farmacológica

Ator: Usuário (Generalização de Administrador e Profissional da Saúde).

Descrição: Permitir a exclusão de classes farmacológicas (conforme RN-12).

Pré-condição: O usuário deve estar autenticado e possuir permissão (conforme

RN-03).

Fluxo principal:

1. O usuário acessa o módulo “Classes farmacológicas”.

2. O sistema exibe a lista de classes cadastradas.

3. O usuário seleciona a exclusão da classe farmacológica.

4. O sistema solicita confirmação.

5. O usuário confirma.

6. O sistema valida e remove a classe.

7. Fim do caso de uso.

Fluxos de Exceção:

6.a: Exclusão negada (classe em uso).

63

1. O sistema verifica se a classe farmacológica está relacionado a um medica-

mento (conforme RN-12).

2. O sistema exibe a mensagem “Este item não pode ser excluído pois está

associado a um medicamento”.

3. Retorna ao passo 2 do fluxo principal.

Pós-condição: A classe farmacológica é excluída.

• CU-13: Cadastrar Espécies Animais

Ator: Usuário (Generalização de Administrador e Profissional da Saúde).

Descrição: Permitir o cadastro de espécies animais (conforme RN-13).

Pré-condição: O usuário deve estar autenticado e possuir permissão (conforme

RN-03).

Fluxo principal:

1. O usuário acessa o módulo “Espécies”.

2. O sistema exibe a lista de espécies cadastradas.

3. O usuário solicita o cadastro da espécie.

4. O sistema exibe os dados a serem preenchidos (conforme RN-13).

5. O usuário preenche o campo e confirma.

6. O sistema salva a nova espécie e atualiza a lista.

7. Fim do caso de uso.

Pós-condição: Uma nova espécie é cadastrada.

• CU-14: Editar Espécies Animais

Ator: Usuário (Generalização de Administrador e Profissional da Saúde).

Descrição: Permitir a edição de espécies animais (conforme RN-13).

Pré-condição: O usuário deve estar autenticado e possuir permissão (conforme

RN-03).

Fluxo principal:

1. O usuário acessa o módulo “Espécies”.

64

2. O sistema exibe a lista de espécies cadastradas.

3. O usuário solicita a edição da espécie.

4. O sistema exibe os dados a serem editados (conforme RN-13).

5. O usuário preenche o campo e confirma.

6. O sistema salva a edição da espécie e atualiza a lista.

7. Fim do caso de uso.

Pós-condição: A espécie é editada com sucesso.

• CU-15: Excluir Espécies Animais

Ator: Usuário (Generalização de Administrador e Profissional da Saúde).

Descrição: Permitir a exclusão de espécies animais (conforme RN-14).

Pré-condição: O usuário deve estar autenticado e possuir permissão (conforme

RN-03).

Fluxo principal:

1. O usuário acessa o módulo “Espécies”.

2. O sistema exibe a lista de espécies cadastradas.

3. O usuário solicita a exclusão da espécie.

4. O sistema solicita confirmação.

5. O usuário confirma.

6. O sistema valida e remove a espécie.

7. Fim do caso de uso.

Fluxos de Exceção:

6.a: Exclusão negada (espécie em uso).

1. O sistema verifica se a espécie está relacionado a um medicamento (con-

forme RN-14).

2. O sistema exibe a mensagem “Este item não pode ser excluído pois está

associado a um medicamento”.

65

3. Retorna ao passo 2 do fluxo principal.

Pós-condição: A espécie é excluída.

	239fd4fe474acc551bb7e5f4167c29f315343e0ba99bd61f08c16f1c46a52e6a.pdf
	239fd4fe474acc551bb7e5f4167c29f315343e0ba99bd61f08c16f1c46a52e6a.pdf
	239fd4fe474acc551bb7e5f4167c29f315343e0ba99bd61f08c16f1c46a52e6a.pdf
	Agradecimentos
	Resumo
	Abstract
	Lista de Figuras
	Lista de Tabelas
	Lista de Abreviaturas e Siglas
	Introdução
	Objetivo
	Organização do Trabalho

	React
	Definição
	Contexto Histórico
	Atualizações

	Fundamentação Teórica

	SIGMEV
	Visão geral do Sistema
	Trabalhos Relacionados
	Plumb's
	Vetsmart
	Posicionamento do SIGMEV

	Requisitos do Sistema
	Requisitos Funcionais
	Regras de Negócio
	Casos de Uso

	Modelagem de Dados
	Entidades
	Relacionamentos

	Implementação
	Tecnologias Utilizadas
	React
	AdonisJS
	InertiaJS
	PostgreSQL
	shadcn/ui

	Estrutura e Arquitetura do Projeto Proposto
	Starter kit
	Monorepo
	Padrão de design MVC
	Arquitetura Modular por Funcionalidade

	Interfaces do Sistema
	Fluxo de Consulta Pública
	Painel de Gerenciamento Administrativo
	Formulários de cadastro de medicamentos e edição
	Painel de gerenciamento de usuários
	Outros gerenciamentos

	Conclusão
	Considerações finais
	Limitações e trabalhos futuros

	Referências
	Especificação de Casos de Uso

